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➢ Economics is about how people make choices when 

they cannot have whatever they would like to have. 

➢ Microeconomics explains how economic agents 

(consumers, firms, and governments) take decisions. 

➢ Microeconomics can analyse the behaviour of large 

groups of economic agents, including entire 

economies. 
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1. Consumer theory 

 

(D.1) Preference relation, ≥, defined on the set X of 

consumption alternatives (choice options) 

 

(D.2) Proposition: Relation ≥ is rational, if 

 1.  x,yX [x≥y ˅ y≥x] (completeness); and 

 2.  x,y,zX [(x≥y ˄ y≥z)  x≥z] (transitivity). 

 

(D.3) Strict preference relation, >: 

 x>y  (x≥y ˄ ¬ y≥x) 
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Note: Preference (and strict preference) relations use the 

same symbols as arithmetic relations (greater than, 

and greater than or equal to). This, however, shall not 

lead to any misunderstandings, since it will always be 

clear from the context whether the formula "x≥y" 

means "x is preferred over y" or "x is greater than or 

equal to y". If x and y are consumption alternatives 

(bundles), i.e. x,yX then the formula reads "x is 

preferred over y", but if x and y are numbers then the 

formula reads "x is greater than or equal to y". 
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(D.4) Indifference relation, : 

 xy  (x≥y ˄ y≥x) 
 

(T.1) Properties of preferences: If ≥ is rational, then: 

 1.  xX [x≥x] (reflexivity of ≥) 

 2.  xX [¬ x>x] (antireflexivity of >) 

 3.  x,y,zX [(x>y ˄ y>z)  x>z] (transitivity of >) 

 4.  xX [xx] (reflexivity of ) 

 5.  x,y,zX [(xy ˄ yz)  xz] (transitivity of ) 

 6.  x,yX [xy  yx] (symmetry of ) 

  (4–6 imply that  is an equivalence in X) 

 7.  x,y,zX [(x>y ˄ y≥z)  x>z] 
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(D.5) Utility function, u:X→, represents the relation ≥: 

  x,yX [x≥y  u(x)u(y)] 

 

(T.2) If there is a utility function representing ≥, then ≥ 

is rational 

 

(T.3) If u is a utility function representing ≥, and f is 

strictly increasing, then f(u) is also a utility function 

representing the same relation ≥. 
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(D.6) Walrasian (competitive) budget set, Bp,w: 

Bp,w = {x+
L: pTx  w} ({x+

L: pTx = w} is a 

budgetary hyperplane) 

 

(T.4)  pL  w>0  >0 [Bp,w = Bp,w] 

 

(D.7) Walrasian demand, x(p,w): 

 Any x(p,w)Bp,w, where p+
L, w+ 

 

(D.8) Weak axiom of revealed preferences: 

 p,p'+
L  w,w'>0 [(pTx(p',w')w ˄ 

x(p',w')x(p,w))  p'Tx(p,w)>w'] 
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(D.9) Walrasian demand is homogeneous of degree 0, if: 

  pL  w>0  >0 [x(p,w) = x(p,w)] 

 

(D.10) Walrasian demand satisfies the Walras Law, if: 

  p+
L  w>0 [xx(p,w)  pTx=w] 

 

(D.11) Walrasian demand function, x(p,w)Bp,w 

 

(D.12) Income effect 

(∂x1(p,w)/∂w, ..., ∂xL(p,w)/∂w)T = Dwx(p,w)  L 



  

  

PhD-1-8 

 

(D.13) Price effect 
┌ ∂x1(p,w)/∂p1 ... ∂x1(p,w)/∂pL ┐ 

│  .                 .   │ 

│  .                 .   │ = Dpx(p,w)  LL 

│  .                 .    │ 

└ ∂xL(p,w)/∂p1  ... ∂xL(p,w)/∂pL  ┘ 

 

(T.5) If a Walrasian demand function is homogeneous of 

degree 0, then 

 p+
L  w>0 [Dpx(p,w)p + Dwx(p,w)w = 0] 
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(D.14) Price and income elasticities, lk(p,w), lw(p,w): 

lk(p,w) = ∂xl(p,w)/∂pk : xl(p,w)/pk 

lw(p,w) = ∂xl(p,w)/∂w : xl(p,w)/w 
 

(T.6) If a Walrasian demand function is homogeneous of 

degree 0, then 

 l=1,...,L [l1(p,w)+...+lL(p,w)+lw(p,w) = 0] 
 

(T.7) If a Walrasian demand function satisfies the 

Walras Law, then 

1.  p+
L  w>0 [pTDpx(p,w)+x(p,w)T = 0T] 

2.  p+
L  w>0 [pTDwx(p,w) = 1] 
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(D.15) A price change from p to p' is compensated, if it 

is accompanied by an income change from w to w' 

such that w'=p'Tx(p,w) 

 

(T.8) If a Walrasian demand function is homogeneous of 

degree 0, the Walras Law is satisfied and the weak 

axiom of revealed preferences is satisfied too, then 

 p,p'+
L  w,w'>0 [w'=p'Tx(p,w)  

(p'–p)T(x(p',w')–x(p,w))0]; 

the first inequality is strict if x(p,w)x(p',w') 
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Proof 

If x(p',w')=x(p,w), then the implication is obvious, 

because (p'–p)T0=0. Thus let us assume that 

x(p',w')x(p,w). Then the left hand side of the inequality 

reads 

L = p'T(x(p',w')–x(p,w)) – pT(x(p',w')–x(p,w)). 

The compensation condition implies that w'=p'Tx(p,w) 

(as well as – from the Walras Law (D.10) – that 

w'=p'Tx(p',w')). Hence the first element of L, 

L1=p'T(x(p',w')–x(p,w)) = p'Tx(p',w') – p'Tx(p,w)) = 

= w'–w' = 0. It is the second element of L, i.e. 

L2=pT(x(p',w')–x(p,w)) which needs to be calculated. 
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Proof (cont.) 

If p'Tx(p,w) = w', it means that x(p,w) can be purchased 

by prices p' and income w'. From the weak axiom of 

revealed preferences (D.8) we infer that pTx(p',w')>w, 

i.e. x(p',w) cannot be purchased by prices p and income 

w. Since – again by the Walras Law – pTx(p,w)=w, then 

L2 is the difference between the numbers pTx(p',w')>w 

and pTx(p,w)=w. Thus it is a positive number. Hence, if 

L1=0 and L2>0, then L<0, which was to be proved. 
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(T.9) By the assumptions of T.8, the coordinates of a 

demand function are non increasing with respect to 

corresponding prices, as long as their changes are 

compensated ("The Law of Demand") 

 

(T.10) By the assumptions of T.8 (substituting 

w'–w=(p'–p)Tx(p,w) with dw=x(p,w)Tdp), if the 

demand function is differentiable, then 

dpT(Dpx(p,w)+Dwx(p,w)x(p,w)T)dp  0 (negative 

semi-definiteness) 
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(D.16) Slutsky Matrix (substitution matrix), S(p,w): 

S(p,w) = Dpx(p,w)+Dwx(p,w)x(p,w)T; 

Slk(p,w)=∂xl(p,w)/∂pk+(∂xl(p,w)/∂w)xk(p,w) 
 

(T.11)  p+
L  w>0  l =1,...,L [Sll(p,w)0] (if the 

assumptions of T.8 are satisfied) 
 

(T.12) By the assumptions of T.8: 

  p+
L  w>0  l =1,...,L [∂xl(p,w)/∂pl>0  

∂xl(p,w)/∂w<0] 

 (Giffen good must be inferior) 
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(D.17) Monotonicity of preferences 

 x,y+
L [x»y  x>y] (» means that all 

coordinates satisfy >) 

 

(D.18) Strong monotonicity of preferences 

 x,y+
L [(xy ˄ xy)  x>y] (> denotes strict 

preference relation) 

 

(D.19) Local non-satiation of preferences 

 x+
L  >0  y+

L [‖y–x‖< ˄ y>x] (> denotes 

strict preference relation) 
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(D.20) Convexity of preferences 

 x,y,z+
L  [0,1] [(yx ˄ zx)  

y+(1–)zx] ( denotes preference relation) 

({y+
L: yx} are convex sets) 

 

(D.21) Strictly convex preferences 

 x,y,z+
L  (0,1) [(yx ˄ zx ˄ yz)  

y+(1–)z>x] (> and  denote strict preference 

and preference relations, respectively) 

 

(D.22) Homothetic preferences 

 x,y+
L  0 [xy  xy] 
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(D.23) Quasi-linear preferences 

1.  x,y+
L-1  >0 [xy  

x+(,0,...0)y+(,0,...0)] 

2.  x+
L-1  >0 [x+(,0,...0)>x] 

 

(D.24) Lexicographic preferences (for L=2) 

 x,y+
2 [xy  (x1>y1 ˅ (x1=y1 ˄ x2y2))] 

 

(D.25) Continuous preferences 

 n=1,2,...  xn,yn+
L [(xnyn ˄ x=limn→xn ˄ 

y=limn→yn)  xy] 
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Quasi-linear preferences 
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(T.13) Lexicographic preferences are not continuous 

Proof 

 Let us take the following example xn = (2/n,0) and 

 yn = (1/n,1) – a sequence of pairs whose elements are 

lexicographically ordered. For each n=1,2,... xn  yn 

holds. Of course xn→(0,0) and yn→(0,1). And yet 

(0,1) > (0,0), i.e. the limit values satisfy a reverse 

relationship. 

 

(T.14) Lexicographic preferences cannot be represented 

by a utility function 
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(T.15) If the relation  is rational and continuous, then 

there exists a utility function which represents it 

 

(D.26) Utility Maximization Problem (UMP) 

Maxx{u(x): x+
L ˄ pTxw} 

 

(T.16) If p»0, and u is continuous, then UMP has a 

solution 
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(T.17) If u is a continuous function representing rational 

preferences , which are locally non-satiated in 

X=+
L, then the Walrasian demand x(p,w) has the 

following properties: 
1.  p+

L  w>0  >0 [x(p,w) = x(p,w)] 

(homogeneity of degree 0) 

2.  p,x+
L  w>0 [xx(p,w)  pTx=w] (The Walras 

Law) 

3. If  is convex (hence u is quasi-concave) then x(p,w) is a 

convex set 

4. If  is strictly convex (hence u is strictly quasi-concave) 

then x(p,w) may have just one element 
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(T.18) Kuhn-Tucker conditions 

If u is differentiable and its derivative is a continuous 

function then each solution x*x(p,w) of the UMP 

satisfies the following condition: 

 0  l=1,...,L [∂u(x*)/∂xl pl˄ (x*
l>0  

∂u(x*)/∂xl=pl)] 

(Dxu(x*)p ˄ (x*»0  Dxu(x*)=p)) 

 

(D.27) Internal solution: 0 « x*x(p,w) 
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(T.19) By the assumptions of T.18 an internal solution 

must satisfy the following conditions: 

 l,k=1,...,L [∂u(x*)/∂xl : ∂u(x*)/∂xk = pl : pk] 

 

(D.28) Marginal Rate of Substitution, MRSlk 

MRSlk = ∂u(x*)/∂xl : ∂u(x*)/∂xk 

 

(D.29) Elements y of the set X can be interpreted as 

lotteries L=(p1,...,pN), where p1+...+pN=1. 

L is the set of such lotteries; their outcomes – 

numbered 1,...,N – are determined. 
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(T.20) A convex combination of lotteries is also a lottery 

(with probabilities calculated as convex combinations 

of probabilities from original lotteries) 
 

(T.21) Preferences  are continuous on L if for every 

L,L',L"L the following sets are closed: 

{[0,1]: L+(1–)L'L"} and {[0,1]: 

L"L+(1–)L'} 
 

(D.30) Preferences  satisfy the independence axiom in 

L, if for every L,L',L"L and every number (0,1) 

LL' is satisfied if and only if 

L+(1–)L"L'+(1–)L" 
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(D.31) The von Neumann-Morgenstern (vNM) expected 

utility function, U: 

U: L → has the "expected utility form", i.e. 

 u1,...,uN  L=(p1,...,pN)L [U(L) = 

u1p1+...+uNpN] 

 

(D.32) Bernoulli utilities 

Numbers un from D.33 can be interpreted as utilities 

of "degenerated lotteries" 

L1=(1,0,...,0),...,LN=(0,...,0,1) 
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(T.22) A utility function U: L → has the "expected 

utility form" if and only if 

 K=1,2,... L1,L2,...,LKL  1,...,K>0 

[1+...+K=1  

U(1L1+...+KLK) = 1U(L1)+...+KU(LK)] 

Proof  

Let L=(p1,...,pN). We define degenerated lotteries 

L1,...,LN such that Li=(0,...,0,1,0,...,0); the ith 

probability is equal to 1. Then L=p1L1+...+pNLN and 

U(L) = U(p1L1+...+pNLN) = p1U(L1)+...+pNU(LN) = 

p1u1+...+pNuN, where the second equality holds by the 

assumption. 
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Proof  

Let us consider a combination of lotteries 

(L1,...,Lk;1,...,k), where Lk=(p1
k,...,pN

k). Let 

L'=1L1+...+kLk. Hence it can be calculated: U(L') = 

= U(1L1+...+kLk) = 

= u1(1p1
1+...+kp1

k)+...+uN(1pN
1+...+kpN

k) = 

= 1(u1p1
1+...+uNpN

1)+...+k(u1p1
k+...+uNpN

k) = 

= 1U(L1)+...+kU(Lk), where the second equality 

follows from the assumption. 
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(T.23) The expected utility theorem 

If a preference relation  in L is rational, and satisfies 

independence and continuity axioms then it can be 

represented by a vNM function, i.e. numbers un can 

be attributed to each outcome n=1,...N such that: 

L=(p1,...,pN),L'=(p'1,...,p'N)L [LL'  

u1p1+...+uNpNu1p'1+...+uNp'N] 
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(D.33) Lottery with monetary payoffs 

The lottery has monetary payments x1,...,xN, and 

Bernoulli utilities are a function u: → of these 

payments: u(x1),...,u(xN). Certainty equivalent of the 

lottery L=(p1,...,pN) is a number c(L,u) such that 

u(c(L,u))=u(x1)p1+...+u(xN)pN 



  

  

PhD-1-30 

 

(D.34) Risk aversion and risk neutrality implied by 

Bernoulli utilities 

L=(p1,...,pN)L [u(x1)p1+...+u(xN)pN  

u(x1p1+...+xNpN)] (aversion) 

L=(p1,...,pN)L [u(x1)p1+...+u(xN)pN = 

u(x1p1+...+xNpN)] (neutrality) 

 

(T.24) The following conditions are equivalent: 

1. A consumer is risk averse 

2. Function u is concave 

3. L=(p1,...,pN)L [c(L,u)  x1p1+...+xNpN] 
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Note (the Allais paradox) 

 There are three outcomes of lotteries: 

➢ x1=0, 

➢ x2=1 million USD, and 

➢ x3=5 million USD 
 

Experiment 1 (most people prefer L1): 

Choose between two lotteries: 

L1=(0,1,0) and L2=(0.01,0.89,0.1) 
 

Experiment 2 (most people prefer L4): 

Choose between two lotteries: 

L3=(0.89,0.11,0) and L4=(0.9,0,0.1) 



  

  

PhD-1-33 

 

Theorem 

People who choose L1 in the first experiment and L4 in 

the second one do not comply with the vNM theory. 

Proof: 

If the vNM theory was followed, then Bernoulli's 

utilities would have been applied: 

➢ u(x1)=u1, 

➢ u(x2)=u2, and 

➢ u(x3)=u3. 
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Proof (cont.) 

The outcome of the first experiment implies that: 

 u2>0.01u1+0.89u2+0.1u3. 

The outcome of the second experiment implies that: 

 0.9u1+0.1u3>0.89u1+0.11u2. 

These two inequalities contradict each other, since the 

second one can rewritten as: 

 0.01u1+0.1u3>0.11u2, and consequently 

 0.01u1+0.1u3>u2-0.89u2, or 

 0.01u1+0.89u2+0.1u3>u2 

which contradicts the first one. 
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Note (the Machina paradox) 

 

• x1=0, 

• x2=10 USD, and 

• x3=10,000 USD 

 

• u(x1)<u(x2)<u(x3); 

• hence L1≤L2≤L3, 

• where L1=(1,0,0), L2=(0,1,0), and L3=(0,0,1). 

• By the independence axiom (D.32): 

• 0.01L2+0.99L3  0.01L1+0.99L3. 
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Note (cont.) 

 

Most people choose otherwise, i.e. 

• 0.01L2+0.99L3  0.01L1+0.99L3. 
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Non-technical summary 

 

A. Preference relations do not have to be rational in real 

life situations; empirical studies do not confirm 

transitivity in some circumstances 

 

B. If weak axiom of revealed preferences holds then the 

Walrasian demand has to satisfy certain algebraic 

conditions – for instance the Slutsky matrix 

(substitution matrix) is negatively semi-definite 
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C. Rational and continuous preferences can be 

represented by utility functions; consumer choice 

problem boils down to mathematical programming 

(UMP); if the function is differentiable then the 

Kuhn-Tucker conditions determine MRS 

 

D. In a probabilistic setting preferences can be 

represented by vNM expected utility functions; 

however, empirical research does not necessarily 

confirm that consumers act as predicted by the vNM 

theory 



  

  

PhD-2-1 

 

2. Individual and aggregate demand 

 

(D.1) Expenditure Minimisation Problem (EMP) 

Minx{pTx: x0 ˄ u(x)u} (it is assumed that p»0 and 

u>u(0)) 
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(T.1) Let us assume that u is a continuous utility 

function representing a locally non-satiated 

preference relation  in X=+
L and p»0. Then: 

1. If x* is a solution of an UMP for some w>0, then x* 

is also a solution of the EMP for u=u(x*). Moreover, 

the minimum expenditure is equal to w. 

2. If x* is a solution of an EMP for some u>u(0), then 

x* is also a solution of the UMP for w=pTx*. 

Moreover, the maximum utility is equal to u. 
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Proof: 

1. Let us assume that x* is not a solution to EMP 

(with uu(x*)). It means that there exists x' such that 

u(x') u(x*) and pTx'<pTx*w. From the local non-

satiation axiom we know that there exists x" close to 

x' such that u(x")>u(x') and still pTx"<w. But this 

implies that x"Bp,w and u(x")>u(x*). This 

contradicts the assumption that x* solved the UMP. 

Hence x* must solve the EMP. The equality pTx*=w 

results from T.17.2 (Walras Law proved in Lecture 

1). 
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Proof (cont.) 

2. If u>u(0) then x*0. Consequently pTx*>0. Let us 

assume that x* is not an optimum for the UMP with 

w=pTx*. That is there exists x' such that u(x')>u(x*) 

and pTx'pT. Let us take x"=αx', α(0,1). From the 

continuity of u, if α is sufficiently close to 1, then 

u(x")>u(x*) and pTx"<pTx*. This, however, 

contradicts the optimality of x* for EMP. Thus x* 

must be an optimum for UMP with w=pTx*, so that 

u(x*) is the maximum utility. The fact that this is 

equal to u will result from T.3.2. 
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(D.2) Expenditure function, e(p,u)=pTx*, where x* is a 

solution of EMP for some p»0 and u>u(0) 

 

(T.2) By the assumptions of T.1 a function e(p,u) is: 

1. homogenous of degree 1 with respect to p 

2. strictly increasing with respect to u and non-

decreasing with respect to pl for all l=1,...,L 

3. concave with respect to p 

4. continuous with respect to p and u 



  

  

PhD-2-6 

 

(D.3) Hicks (compensated) demand function, h(p,u): 

Set of solutions of EMP, h(p,u)+
L, is called 

Hicksian (compensated) demand; if it consists of a 

single point, it defines a Hicksian demand function 
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(T.3) By the assumptions of T.1 Hicksian demand has 

the following properties: 

1. homogeneity of degree 0 with respect to p, 

(pL  u  >0 [h(p,u)=h(p,u)]) 

2. no excess utility (xh(p,u) [u(x)=u]) 

3. if  is convex, then h(p,u) is convex 

4. if  is strictly convex (hence u(.) is strictly quasi-

concave), then h(p,u) consists of a single point 

 

(T.4) The Kuhn-Tucker conditions for EMP 

 0 [pDxu(x*) ˄ x*T(p-Dxu(x*))=0] 
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(D.4) Hicks-compensated income 

h(p,u) = x(p,e(p,u)); when the prices p change for p': 

then wHicks=e(p',u)-w 

 

(T.5) The law of demand 

By the assumptions of T.1, let h(p,u) be a Hicksian 

demand function. Then 

 p',p"L [(p"–p')T(h(p",u)–h(p',u))0] 

 

(T.6) (p"l–p'l)(hl(p",u)–hl(p',u))0 (note: the relationship 

may not hold for a Walrasian demand function) 
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(T.7) By the assumptions of T.1, let  defined over 

X=+
L be strictly convex. Then 

 pL  u [h(p,u) = Dpe(p,u)] 

( pL  u  l=1,...,L [hl(p,u)=∂e(p,u)/∂pl]) 

 

(T.8) In T.7 let h be differentiable in (p,u), and its 

derivatives be continuous functions. Then 

1. Dph(p,u) = Dp
2e(p,u) 

2. Dph(p,u) is negatively semi-definite 

3. Dph(p,u) is symmetric 

4. Dph(p,u)p = 0 
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(T.9) Slutsky equation 

In T.7 let u=u(x*), where x* is a solution to an UMP. 

Then 
 

 pL  w>0 [Dph(p,u) = 

= Dpx(p,w)+Dwx(p,w)x(p,w)T] 

( pL  w>0  l,k=1,...,L [∂hl(p,u)/∂pk = 

= ∂xl(p,w)/∂pk+xk(p,w)∂xl(p,w)/∂w]) 
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(D.5) Strong axiom of revealed preferences (for a 

demand function) 

 N=1,2,... [ (p1,w1),...,(pN,wN)L+1  nN–1 

[(x(pn+1,wn+1)x(pn,wn) ˄ pnTx(pn+1,wn+1)wn)]  

pNTx(p1,w1)>wN] 

 

(T.10) If a Walrasian demand function x(p,w) satisfies 

strong axiom of revealed preferences, then there 

exists a rational preference relation  which is 

consistent with x(p,w), i.e.: 

 pL  w>0  yBp,w [yx(p,w)  x(p,w)>y] 
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(D.6) Aggregate demand for I consumers each of which 

has a rational preference relation i and derived from 

it a Walrasian demand function xi(p,wi) reads: 

x(p,w1,...,wI) = x1(p,w1)+...+xI(p,wI) 

 

(T.11) If functions in D.6 are differentiable then 

x(p,w1,...,wI) = x(p,w), where w=w1+...+wI if and 

only if for any good l=1,...,L, any consumer i,j=1,...,I 

and any income distribution (w1,...,wI) the following 

equality holds: 

∂xli(p,wi)/∂wi = ∂xlj(p,wj)/∂wj 
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(T.12) If the income distribution (w1,...,wI) depends only 

on w=w1+...+wI and p, then the aggregate demand 

does not depend on this distribution, but only on w 

and p: 

x(p,w1,...,wI) = x(p,w) 

 

(T.13) Conditions of T.12 are satified when 

wi(p,w)=iw (1+...+I=1, 1,...,I – parameters) 
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(T.14) The following characteristics of individual 

demands xi(p,wi) carry on to aggregate demand 

x(p,w1,...,wI): 

1. continuity, 

2. homogeneity of degree 0, 

3. Walras Law 
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(T.15) Weak axiom of revealed preferences satisfied by 

all individual demand functions x1(p,w1),...,xI(p,wI) – 

when income distribution is as in T.13 – does not 

imply this axiom for the aggregated demand function 

x(p,w) 
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Proof 
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Proof (cont.) 

 Let the market consist of two goods only. Two 

consumers (1 and 2) revealed preferences as a result 

of choosing bundles when prices were p and p'. In 

both cases each of them had a half of the total income 

w both of them enjoy jointly. Let us denote their 

(identical) budget sets constructed with respective 

prices by Bp,w/2 and Bp',w/2. As the picture shows, the 

optimum bundles for the consumer 1 – i.e. individual 

demands for given prices and income – are x1(p,w/2) 

and x1(p',w/2), respectively. For the consumer 2 

optimum choices are x2(p,w/2) and x2(p',w/2). 
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Proof (cont.) 

Thus aggregate demand for prices p will read x(p,w)= 

x1(p,w/2)+x2(p,w/2), and for prices p': x(p',w)= 

x1(p',w/2)+x2(p',w/2). The picture above shows halves of 

this aggregate demand, i.e. average bundles. As the 

pictures shows, these average bundles cannot satisfy the 

weak axiom of revealed preferences. It is evident that 

pTx(p',w)/2<w/2, i.e. pTx(p',w)<w and p'Tx(p,w)/2<w/2, 

i.e. p'Tx(p,w)<w. In other words, the bundle x(p',w) can 

be afforded by prices p, but x(p,w) is chosen. Likewise 

x(p,w) can be afforded by p', but x(p',w) is chosen 

instead. The first fact reveals the preference 

x(p,w)>x(p',w) while the second one: x(p',w)>x(p,w). 
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(D.7) Demand function (whether individual or 

aggregate) x(p,w) satisfies the Uncompensated Law 

of Demand (ULD) when: 

 p,p'L  w>0 

[(p'–p)T(x(p',w)–x(p,w))0 ˄ (x(p',w)x(p,w)  

(p'–p)T(x(p',w)–x(p,w))<0)] 

 

(T.16) If individual demand functions 

x1(p,w1),...,xI(p,wI) satisfy D.7, and income 

distribution is determined as in T.13, aggregate 

demand x(p,w) satisfies D.7 too. 
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(T.17) By T.16 assumptions aggregate demand function 

satisfies the weak axiom of revealed preferences, i.e. 

 p,p'+
L  w,w'>0 

[(pTx(p',w')w ˄ x(p',w')x(p,w))  p'Tx(p,w)>w'] 

 

(D.8) Indirect utility function, v(p,w)=u(x*), where x* 

solves UMP (with p»0 and w>0) 
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(T.18) If u is a continuous utility function representing 

preference relation , which is locally non-satiated in 

X=+
L, then indirect utility function v has the 

following properties: 

1. v is homogenous of degree 0 

2. v is strictly increasing with respect to w and non-

increasing with respect to pl (for any l=1,...,L) 

3. v is quasi-convex (i.e. sets {(p,w)+
L+1: 

v(p,w)v0} are convex for any v0) 

4. v is continuous with respect to p i w 
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(D.9) For an aggregate demand function x(p,w) there 

exists a representative consumer in a positive sense, if 

there is a rational preference relation  in +
L that 

yields this demand function, i.e. if: 

 x,p+
L  w [(pTxw ˄ xx(p,w))  

x(p,w)>x] 

 

(D.10) Bergson-Samuelson social welfare function, 

W: I→, which aggregates individual utilities 
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(D.11) Bergson-Samuelson problem, (BSP): 

Max {W(v1(p,w1),...,vI(p,wI)): w1+...+wIw}, where 

p,w are arbitrary, and W – a social welfare function 

 

(T.19) Let us assume that for any p and w, 

w1(p,w),...,wI(p,w) are solutions to BSP (from D.11). 

Then the value of W of this solution, v(p,w), is an 

indirect utility function of the consumer who is 

representative (in a positive sense) for the aggregate 

demand function x(p,w)=x1(p,w1)+...+xI(p,wI) 
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(D.12) Let us assume that for an aggregate function 

x(p,w)=x1(p,w1(p,w))+...+xI(p,wI(p,w)) there exists a 

representative consumer in a positive sense and the 

corresponding preference relation is . If for arbitrary 

p and w income distribution w1(p,w),...,wI(p,w) 

solves BSP – and thus the values of these solutions 

are an indirect utility function for  – then the 

consumer is called representative in a normative 

sense for the function W. 
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(T.20) If the income distribution w1(p,w),...,wI(p,w) 

which solves a BSP depends on w, and not on p, then 

every consumer representative in positive sense is 

also representative in normative case for W 

 

(T.21) If consumers have homothetic preferences 

representing the same utility function which is 

homogeneous of degree 1, and 1+...+I=1, 

1,...,I>0, then for the Bergson-Samuelson function 

given by the formula W(u1,...,uI)=1lnu1+...+IlnuI 

each consumer who is representative in a positive 

sense is also representative in a normative sense 
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Non-technical summary 

 

A. Consumer's optimum choice can be seen from two 

points of view: utility maximisation subject to a 

budget constraint (UMP) or expenditure minimisation 

subject to a minimum utility level (EMP). It turns out 

that if the utility function is continuous and represents 

locally non-satiated preferences then both approaches 

imply the same choices 
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B. UMP implies a Walrasian (uncompensated) demand 

function x(p,w), and EMP a compensated (Hicksian) 

demand function, h(p,u). The former is defined by 

observable variables while the latter contains a non-

observable one (u). Nevertheless the Slutsky equation 

lets characterize the latter by the former, and First 

Order Conditions for internal solutions are identical 

in both cases. 
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C. Hicksian demand function satisfies the "Law of 

Demand" which is satisfied by Walrasian demand 

functions only when (by additional assumptions) 

income is compensated 

 

D. Strong axiom of revealed preferences implies that the 

Walrasian demand reflects some rational preferences; 

weak axiom of revealed preferences is not sufficient 

for such an argument. 



  

  

PhD-2-29 

 
E. Not all the properties of individual demand functions are 

inherited by the aggregate demand function. For instance, 

continuity, homogeneity of degree 0, Walras Law, and 

the Law of Uncompensated Demand are inherited, but 

weak axiom of revealed preferences is not. 

 

F. A representative consumer in a positive sense is sought 

for an aggregate demand function in order to understand 

this demand as a result of this consumer's preferences. In 

addition, if a Bergson-Samuelson social welfare function 

is defined, one can analyze if this consumer's choices 

maximise the function. If yes, the consumer is called 

representative in a normative sense as well. 
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Exercise 

Weak axiom of revealed preferences satisfied by a Walrasian 

demand function does not imply strong axiom of revealed 

preferences 

 

Counterexample. Let us consider three price systems: p1, p2, p3; and 

three corresponding bundles: x1, x2, x3 selected by a consumer 

according to a Walrasian demand function x (if x is a demand 

function it means that for given prices there exists only one bundle 

that the consumer prefers over other ones in the budget set): 

 p1=(1,2,2) p2=(2,2,1) p3=(2,1,2) 

 x1=(2,2,1) x2=(2,1,2) x3=(1,2,2) 

We assume that in each case the consumer's income is the same: 

w1=w2=w3=w=8. It is easy to see that in each of the three cases 

budget constraint is satisfied and entire income is spent, i.e. 

(piTxi)=8. 
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3. Production Theory 

 

(D.1) Production set, YL: set of all possible 

production combinations (if yY and yl<0, then the 

good l is a net input) 

 

(D.2) (Production) transformation function, F: L→ 

such that Y={yL: F(y)0}. The set 

{yL: F(y)=0} 

is called a production possibility frontier 
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(D.3) If F is differentiable and F(y0)=0, then 

MRTlk(y
0) = ∂F(y0)/∂yl : ∂F(y0)/∂yk 

is called the Marginal Rate of Transformation of good 

l  in good k 

 

(T.1) If L=2, then MRTlk(y
0) corresponds to the 

direction of the frontier in y0 (in a yl–yk plane) 
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Proof (using the Leibniz-Newton notation) 

 

Economists (and engineers) apply the symbol "dy" in 

order to denote so-called differential of y. This 

notation was widely used by 17th and 18th century 

mathematicians who laid foundations for differential 

calculus. Later on it was used only in symbols such as 

"dy/dx", and examples were provided to prove that 

de-coupling "dy" from "dx" can lead to a nonsense. 

Indeed it can. Nevertheless, when applied with 

caution, it can simplify formulae. In what follows we 

will use this notation (dy) instead of simple 
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Proof (cont.) 

derivatives. For practical purposes, in order to calculate 

df(x), one needs to calculate df(x)/dx=g(x) and 

"multiply" both sides of the equation by dx. 
 

As we move along an isoquant, dF=0. Therefore (by the 

so-called complete differentiation formula): 

(∂F(y0)/∂yl)dyl+(∂F(y0)/∂yk)dyk=0. Doing the Leibniz-

Newton trick, we get: 

(∂F(y0)/∂yl) : (∂F(y0)/∂yk) = -dyk/dyl. 

i.e. what was to be proved (note that ∂F(y0)/∂yl means the 

value of a derivative of F calculated for y=y0). 
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(D.4) Notational convention. If there is only one good 

(coordinate) considered an output, yL, and all the 

remaining ones are considered inputs y1,...,yL-1, then 

we apply the following notation: y=(–z1,...,–zL-1,q), 

F(y1,...,yL)=q–f(z1,...,zL-1), and f: L-1→. Then 

Y={(–z1,...,–zL-1,q): q–f(z1,...,zL-1)0 

and z1,...,zL-10}. 

 

Marginal Rate of Technical Substitution, 

MRTSlk(z
0) = ∂f(z0)/∂zl : ∂f(z0)/∂zk 
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(D.5) Production set axioms 

1. Non-emptiness, Y 

2. Closedness, 

yL y1,y2,... Y [y=limn→yn  yY] 

3. "No free lunch", yY [y0  y=0] 

4. "No sunk costs", 0Y 

5. "Free disposal", y,y'L [(yY ˄ y'y)  

y'Y] 

6. Irreversibility, yY [y0  –yY] 

7. Non-increasing scale effects, 

yY [0,1] [yY] 
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8. Non-decreasing scale effects, 

yY 1 [yY] 

9. Constant scale effects, 

yY 0 [yY] (i.e. Y is a cone) 

10. Additivity ("free entry"), y,y'Y [y+y'Y] 

11. Convexity, 

y,y'Y [0,1] [y+(1–)y'Y] 

12. Y is a convex cone, 

y,y'Y ,0 [y+y'Y] 
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Production set Y 
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(T.2) Relations among D.5 axioms 

1. (7)  (4) 

2. (11) ˄ (4)  (7) 

3. (4)  ((11)  f is a concave function) 

4. ((9) ˄ (11))  (12) 

5. ((10) ˄ (7))  (12) 

 

(D.6) Profit Maximisation Problem (PMP): 

Maxy{pTy: yY} = Maxy{pTy: F(y)0}. 

Profit function, (p) = Maxy{pTy: yY}. 

Firm's (net) supply, y(p) = {yY: pTy=(p)} 
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(T.3) Axiom (8) from D.5 implies: 

p [(p)0 ˅ (p)=+] 

 

Proof: 

(p)=Maxy{pTy: yY}. Thus y0Y [pTy00]  

(p)0. If however there is y0Y such that pTy0>0 

then we obviously have pTy0<pT(αy0), and – by 

D.5.8 – (αy0)Y for α1. This means that by moving 

from y0 to αy0 profit will increase proportionally (and 

it cannot be constrained by any finite number). 
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(T.4) Kuhn-Tucker conditions for PMP: 

y*y(p)  0 [pl  = ∂F(y*)/∂yl ; l =1,...,L] 

(y*y(p)  0 [DyF(y*)=p]) 

 

(T.5) MRTlk(y
*) = pl/pk 



  

  

PhD-3-13 

 

(T.6) Following the notational convention from D.4: 

PMP can be written as: Maxz0{pf(z)–wTz}, where 

p = [w1,...,wL-1,p]T, 

and the Kuhn-Tucker conditions read: 

p∂f(z*)/∂zl wl  and 

(p∂f(z*)/∂z1–w1)z*
1+...+(p∂f(z*)/∂zL-1–wL-1)z*

L-1 = 0 

(pTDzf(z)w ˄ (pTDzf(z)–w)z*=0) 

z*
l,z

*
k>0  MRTSlk = wl/wk 

 

(T.7) If Y is a convex set, then Kuhn-Tucker conditions 

(T.4) are sufficient for finding optimum, y* 
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(T.8) Let us assume that Y is a closed set, and disposal 

is free (D.5.2 and D.5.5) Then: 

1.  is homogeneous of degree 1 

2.  is convex 

3. Y is convex  Y = {yL: p»0 [pTy(p)]} 

4. y is homogeneous of degree 0 

5. Y is convex  p [y(p) is a convex set] 

6. Y is strictly convex  p [y(p)  y(p) 

consists of a single point] 
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7. Hotelling lemma: 

y(p0) consists of a single point   is 

differentiable and Dp(p0)=y(p0) 

8. p,p' yy(p),y'y(p') [(p–p')T(y–y')0] 

(the "Law of Supply") 

9. p,p' yy(p),y'y(p') [(kl  pk=p'k) 

 (pl –p'l)(yl –y'l)0] 

(the supply moves where the prices move) 

10. If y is differentiable in p0, then the substitution 

matrix, Dpy(p0) = D2
p(p0), is symmetric and 

positively semi-definite with Dpy(p0)p0 = 0 
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Proof (of the item 2 only): 

Let yy(αp+(1-α)p'). Then π(αp+(1-α)p') = 

= (αp+(1-α)p')Ty = αpTy + (1-α)p'Ty  

 α (p)+(1-α) (p'). 

 

(T.9) By the assumption T.8(10): 

1. l =1,...,L [∂yl(p)/∂pl 0] (non-negativity of own 

substitution effects) 

2. l,k=1,...,L [∂yl(p)/∂pk=∂yk(p)/∂pl ] (symmetry of 

substitution effects) 
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(D.8) Cost Minimization Problem (CMP) (only for a 

single output and z0, w»0): 

Minz{wTz: f(z)q} 

If z* solves CMP, then c(w,q) = wTz* is called a cost 

function, and z(w,q) = z* is called a conditional 

(secondary) demand for production factors. 
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(T.10) Kuhn-Tucker conditions for CMP: 

If z* solves CMP, and f is a differentiable function, 

then: 

0 l =1,...,L–1 [wl  ∂f(z*)/∂zl ˄ (z*
l >0  

wl=∂f(z*)/∂zl )] 

If Y is convex (f is concave), then the condition 

above is sufficient for z* to solve CMP 
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(T.11) Analogues to T.2, T.3, T.7 and T.8 from the 

lecture 2 
Keeping the notation of D.8 and assumptions to T.8: 

 

1. c is homogeneous of degree 1 with respect to w and non-

decreasing with respect to q 

2. c is concave with respect to w 

3. If sets {z0: f(z)q} are convex for every q, then 

Y = {(–z,q): wTzc(w,q), w»0} 

4. z is homogeneous of degree 0 with respect to w 

5. If the set {z0: f(z)0} is convex, then z(w,q) is also a 

convex set. Moreover if the set {z0: f(z)0} is strictly 

convex, then z(w,q) consist of a single point 
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6. Shepard's Lemma: 

if z(w0,q) consists of a single point, then c is differentiable 

with respect to w in w0, and Dwc(w0,q)=z(w,q) 

7. If z is differentiable in w0, then Dwz(w0,q)=D2
wc(w0,q) is a 

symmetric, negatively semi-definite matrix, and 

Dwz(w0,q)w0 = 0 

8. If f is homogeneous of degree 1 (i.e. its returns of scale 

are constant), then c and z are homogeneous of degree 1 

with respect to q 

9. If f is concave, then function c convex with respect to q 

(i.e. the marginal cost is a non-decreasing function of q) 
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(T.12) PMP can be also phrased as the following 

problem: 

Maxq0{pq–c(w,q)}, 

the first order condition of which reads: 

p–∂c(w,q*)/∂q0 and if q*>0, then p–∂c(w,q*)/∂q=0 



  

  

PhD-3-22 

 

(D.9) Aggregate supply y(p) from J firms characterized 

by production possibility sets Y1,...,YJ and satisfying 

axioms D.5 (1), (2) i (5) with respective maximum 

profits j(p) and supplies yj(p) (for j=1,...,J): 

y(p) = y1(p)+...+yJ(p) = {yL: y=y1+...+yJ 

for some yjyj(p), j=1,...,J} 

Aggregate production set 

Y = Y1+...+YJ = {yL: y=y1+...+yJ 

for some yjYj, j=1,...,J} 

*(p), y*(p) 

– optimum profit and supply for the production set Y 
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(T.13) For any p»0 

1. *(p) = 1(p)+...+J(p) 

2. y*(p) = y1(p)+...+yJ(p) 
 

(D.10) Production (supply) yY is called efficient, if 

there is no y'Y such that y'y an y'y 
 

(T.14) If yY solves a PMP for some p»0, then y is 

efficient 
 

(T.15) If Y is convex and yY is efficient, then y solves 

a PMP for some p0 
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Non-technical summary 
 

A. Production set axioms reflect alternative assumptions 

about production conditions and they are subject to 

empirical verification. 
 

B. There is an analogy between optimisation problems of 

consumer theory (UMP and EMP) and optimisation 

problems of production theory (PMP and CMP). The 

fundamental formal distinction between UMP and PMP 

is that a firm does not have a budget constraint (hence 

there are no 'income effects' in PMP). Consequently there 

may be no finite solution y* by non-decreasing returns to 

scale. 
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C. A more comprehensive analogy is between EMP and 

CMP. There is a correspondence between the utility 

function u and the production function f, expenditure 

function e and cost function c, as well as between 

Hicksian demand h, and conditional demand for 

inputs z. As a result, properties of e and c, and h and z 

are similar. For instance, T.7 from the lecture 2 and 

Shepard's Lemma (T.11.6) from lecture 3. 
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D. In consumption theory there is no strict equivalent of 

T.13 on aggregate supply, as there is no obvious 

utility aggregation procedure (such as the obvious 

procedure for profit aggregation). 

 

E. T.14 and T.15 can be interpreted as theorems on the 

optimality of market allocation for the system 

consisting of J price-taking firms. 
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4. Game theory 

 

(D.1) Extended form game, 

E = [X, A, I, p, , H, H, , , u], where: 

 

1. A finite set of nodes X, a finite set of possible 

actions A, and a finite set of players {1,...,I} 
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2. A function p: X → X{} specifying a single 

immediate predecessor of each node x; for every 

xX, p(x) is non-empty except for one, designated 

as the initial node, x0. The immediate successor 

nodes of x are thus s(x)=p-1(x). All predecessors 

and all successors of x can be found by iterating 

operations p and s. It is assumed that for any x and 

for any k=1,2,... p(x)∩sk(x)= (if sk(x) is defined). 

The set of terminal nodes T={xX: s(x)=}. All 

other nodes (X\T) are called decision nodes. 
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3. A function : X\{x0} → A giving the action that 

leads to any non-initial node x from its immediate 

predecessor p(x) and satisfying the condition that: 

if x',x"s(x) and x'x", then (x')(x"). 

The set of choices available at decision node c is 

c(x) ={aA: a=(x') for some x's(x)} 
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4. A family of information sets H and a function H: 

X → H assigning each decision node to an 

information set H(x)H. Thus, the information 

sets in H form a partition of X. It is required that 

all decision nodes assigned to the same 

information set have the same choices available, 

i.e.: 

H(x)=H(x')  c(x)=c(x'). 

Hence choices available at information set H can 

be defined as 

C(H) = {aA: ac(x) for xH} 
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5. A function :H → {0,1,...,I} assigning each 

information set in H to a player (or to nature 

formally identified as the player 0), who moves at 

the decision nodes in that set. We can define the 

family of player's i information sets as 

H i={H H: i=(H)} 

6. A function :H0A → [0,1] assigning probabilities 

to actions at information sets where nature moves 

and satisfying (H,a)=0 if aC(H) and 

aC(H)(H,a)=1 for all HH0 
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7. A family of payoff functions u=(u1,...,uI) assigning 

utilities to the players for each terminal node that 

can be reached, ui:T → . In order to be consistent 

with the theory of expected utility, values of the 

functions ui should be interpreted as Bernoulli 

utilities. 

 

(D.2) Let Hi denote the family of information sets of the 

payer i, A – set of possible actions, and C(H)A – the 

set of actions available at information set H. A 

strategy for player i is a function si:Hi → A such that 

si(H)C(H) for all HHi 
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Example: Tic Tac Toe (classic) 
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Example: Tic Tac Toe (mathematical) 
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Example (matching pennies) 

 

One player chooses Heads or Tails. The other one 

independently (perhaps simultaneously) chooses Heads 

or Tails as well. They disclose their choices. 
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Example (cont.) 

 

In case there is HH or TT, the second pays 1 to the first; 

otherwise the first pays 1 to the second. Independence 

(perhaps simultaneity) of both choices is reflected by the 

fact that the nodes where the second player makes the 

choice belong to the same information set. In the 

diagram ('game tree') this is reflected by the dotted line. 
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(D.3) Game in a normal (condensed, strategic) form, 

N = [I, S1...SI, (u1,...,uI)], where 

1. Si – set of strategies of player i (siSi) 

2. ui(s1,...,sI) – a payoff function whose values can be 

interpreted as expected utilities (in the von 

Neumann-Morgenstern sense) of outcomes 

(perhaps probabilistic ones) 

 

(T.1) For every extended form game there is a unique 

normal form game, but not vice versa (i.e. the same 

normal form game may correspond to several 

extended form games) 
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Example 

 

The 'Matching pennies' game depicted in the tree above 

corresponds to the following payoff matrix: 

 

 
Second 

H T 

First 
H (1,-1) (-1,1) 

T (-1,1) (1,-1) 
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(D.4) Strategies si(H) from D.2 are called pure 

strategies. Any function i : Si → [0,1] such that i0 

and siSii(si) = 1 is called a mixed strategy. 

Numbers i(si) are interpreted as probabilities of 

choosing a (pure) strategy si. Game with mixed 

strategies is written as 

N = [I, (S1)... (SI), (u1,...,uI)] 

 

(D.5) Notational convention: s-i = (s1,...,si-1,si+1,...,sI), −i 

= (1,...,i-1,i+1,...,I), S = S1...SI, 

S-i = S1...Si-1Si+1...SI 
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(D.6) Strictly dominant strategy, siSi: 

s'isi s-iS-i [ui(si,s-i)>ui(s'i,s-i)] 

 

(D.7) Strictly dominated strategy, siSi: 

s'isi s-iS-i [ui(s'i,s-i)>ui(si,s-i)]. 

Strategy s'i strictly dominates over strategy si 
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(D.8) Nash equilibrium, strategy profile s=(s1,...,sI) such 

that: 

i=1,...I s'iSi [ui(si,s-i)ui(s'i,s-i)]. 

For mixed strategies, strategy profile =(1,...,I) 

such that: 

i=1,...I 'i(Si) [ui(i,-i)ui('i,-i)] 

 

(T.2) Every game N = [I, (S1)... (SI), (u1,...,uI)], 

where sets S1,...,SI have finite number of elements has 

a Nash equilibrium in mixed strategies 
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Example (Prisoner's Dilemma) 

 

 
Second 

C D 

First 
C (-12,-12) (0,-18) 

D (-18,0) (-1,-1) 

 

Nash equilibrium is for (C,C) which is the very worst 

outcome for two players; i.e. Nash equilibrium does not 

necessarily 'optimize' the global outcome (which – in 

this case – would be (D,D)) 
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(T.3) Game N = [I, (S1)... (SI), (u1,...,uI)] has a 

Nash equilibriumin pure strategies if for every 

i=1,...,I: 

1. Si is a non-empty, convex compact subset of M 

(for some M); and 

2. ui(s1,...,sI) is continuous with respect to (s1,...,sI) 

and quasi-concave with respect to si 
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(D.9) Sequential rationality principle: each player's 

strategy should contain actions that are optimal for 

every node (taking into account other players' 

strategies) 

(D.10) Finite game with perfect information: every 

information set contains only one node and the 

number of nodes is finite 

(T.4) Backward induction. Sequential rationality 

principle is satisfied if an optimum action for p(x) is 

determined once an optimum action for x is 

determined (i.e. anticipating an optimum solution at 

x) 
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(T.5) For finite games with perfect information 

backward induction boils down to determining 

outcomes for all terminal nodes x, determining 

optimum actions for preceding nodes p(x), assigning 

them payoffs that result from these optimum actions, 

and eliminating remaining strategies. This procedure 

is then iterated for earlier nodes p(p(x)) and so on, 

until all the nodes are exhausted. 
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(T.6) Zermelo Theorem. Every finite game with perfect 

information E has a Nash equilibrium in pure 

strategies which can be found using backward 

induction. Moreover if none of the players has 

identical payoffs in two different terminal nodes, this 

is the only Nash equilibrium that can be found in this 

way. 
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Example (Centipede game) 
 

 
 

This 2-person game lasts 2k periods (where k=1,2,3,...), it has 

2k decision nodes, and 2k+1 terminal nodes. The players 

move in turns, starting with the player number 1. In every 

node either of the two decisions can be taken: Stop (S) or 

Continue (C). If the game is stopped at node i=1,2,3,...,2k then 

the payoffs are: P(i)=i-(1+(-1)i), D(1)=0, and for i>1 D(i)=i-

(1-(-1)i). If the game is not stopped by any player at any node, 

it terminates with the payoffs P(2k)=2k, and D(2k)=2k-1. 
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(D.11) Subgame of an extended form game E – a subset 

satisfying the following two conditions: 

1. It starts with an information set consisting of a 

single decision node x, contains all subsequent 

nodes, s(x), s(s(x)) and so on, and does not contain 

other nodes; 

2. If the node x is in the subgame then every x'H(x) 

is in it as well (i.e. a subgame does not contain 

'incomplete' information sets). 

 

(T.7) The entire game E is also a subgame 
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(T.8) Every decision node in a finite game with perfect 

information can 'start' a subgame 

 

(D.12) A strategy profile =(1,...,I) in an I-person game 

E induces a Nash equilibrium in a subgame of this 

game, if actions defined by  for information sets of this 

subgame (understood as a separate game) make a Nash 

equilibrium in it 

 

(D.13) A strategy profile =(1,...,I) in an I-person game 

E is called Subgame Perfect Nash Equilibrium, SPNE, if 

it induces a Nash equilibrium in its every subgame 
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(T.9) Every finite game with full information E has a 

SPNE in pure strategies. Moreover, if none of the 

players has identical payoffs in two different terminal 

nodes, this is the only SPNE. 
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Example 

 

A market is served by one firm called Incumbent (I). 

Another firm (F) contemplates entering the market. It 

has two strategies: Enter (E) and Do Not Enter (D). If it 

chooses D, the payoffs are [0,4] (its payoff is 0, and the 

payoff of the Incumbent is – as before – 4). If it chooses 

E, the two firms will play a duopolistic game which 

boils down either to attacking (A) e.g. by a price war or 

to cooperating (C), e.g. à la Cournot or Stackelberg (or 

by sharing the market). If both attack then the payoffs 

are [-3,-1], if they cooperate then they are [3,1]. 
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Example (cont.) 
 

If I attacks and F cooperates it is [-2,-1], and if I 

cooperates and F attacks it is [1,-2]. The story can be 

reflected by a game ΓE defined by the tree: 
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Example (cont.) 

 

If F chooses E, then I has two strategies: A and C. 

Choosing its own strategy, F does not know what 

strategy has been chosen by I. This is reflected by the 

two nodes where F moves belonging to the same 

information set (the two nodes are linked by a dotted 

line). The game ΓE has two subgames: the entire game 

and, say, ΓO the oligopolistic rivalry part following the 

decision E taken by F. 
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Example (cont.) 

 

It can be demonstrated that the number of subgames is 

the difference between the number of non-terminal 

nodes (here 4) and the number of nodes 'hidden' in non-

single node information sets (here 2). Hence the number 

of subgames is 2. Since by T.7 ΓE is also its subgame, 

then ΓO is the only other subgame. 
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Example (cont.) 

 

The game ΓE has the following strategic (normal) form 

ΓN: 

 Incumbent (I) 

C if F 

enters 

A if F 

enters 

Entering 

Firm (F) 

D&C 0,4 0,4 

D&A 0,4 0,4 

E&C 3,1 -2,-1 

E&A 1,-2 -3,-1 

 



  

  

PhD-4-30 

 

Example (cont.) 

 

This strategic-form game has three Nash equilibria 

(D&C,A), (D&A,A), and (E&C,C) with payoffs (0,4), 

(0,4), and (3,1), respectively. The first two do not satisfy 

the sequential rationality principle (I's threat that it will 

attack if F enters is not credible). 
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Example (cont.) 

 

The subgame ΓO has the following strategic form 

(payoff matrix): 

 

 Incumbent (I) 

C A 

Entering 

Firm (F) 

C 3,1 -2,-1 

A 1,-2 -3,-1 

 

The only Nash equilibrium in this subgame is (C,C). 
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Non-technical summary 

 

A. Game theory is an analytical method of predicting 

behaviour linked to conflict or cooperation. When 

taking decisions, players do not necessarily know their 

partners' decisions, but they know their space of choice 

and understand consequences of alternative decisions. 

 

B. The central concept of the game theory is Nash 

equilibrium. Nash equilibrium denotes a situation 

(strategy profile) such that no player has a motivation 

to unilaterally change his or her strategy. 
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C. Nash equilibrium can be realized in a situation which is not 

at all optimal for the players. 

 

D. Games with a finite number of nodes and when players do 

not take decisions simultaneously (i.e. they a priori know 

decisions of their partners) are called finite games with 

perfect information. In such cases actions can be predicted 

simply by the backward induction method. By applying 

this method the only Nash equilibria that can be found are 

those which satisfy the sequential rationality principle. 

 

E. The concept of Subgame Perfect Nash Equilibrium (SPNE) 

reflects the sequential rationality principle. 
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5. Competitive equilibrium 
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(D.1) Feasible allocation, any combination 

(x1,...,xI,y1,...,yJ)  X1...XIY1...YJ satisfying 

xl1+...+xlI  l + yl1+...+ylJ for l=1,...,L; notation as in 

lectures 1 and 3, and symbol l 0 stands for an 

initial allocation (endowment) of the good l  in the 

economy 
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(D.2) Pareto optimality, any combination satisfying D.1, if 

there is no other feasible allocation 

(x'1,...,x'I,y'1,...,y'J) such that: 

i=1,...,I [ui(x'i)ui(xi)] ˄ i=1,...,I [ui(x'i)>ui(xi)] 

 

(D.3) Ownership in economy. It is assumed that the initial 

endowment of every good l  is entirely owned by 

consumers: l  = l1+...+lI, (vector of initial 

endowments owned by a consumer i is denoted as i = 

(1i,...,Li)T). It is also assumed that every consumer i 

has share of ij in firm j, with 1j+...+Ij = 1 for every 

j=1,...,J 
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(T.1) By the notation of D.3 every consumer i has a de 

facto monetary income 

wi=pTi + i1pTy1+...+iJpTyJ 

implied by a (possible) sale of the initial endowments 

and shares in firms 
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(D.4) Competitive (Walrasian) equilibrium, any allocation 

(x*
1,...,x*

I,y*
1,...,y*

J) satisfying D.1 coupled with a price 

vector p*L, which satisfy the following conditions: 

1. Profit maximization of firms: for any j=1,...,J y*
j 

solves a PMP 

 Maxyj{p*Tyj: yjYj} 

2. Utility maximization of consumers: for every i=1,...,I 

x*
i solves a UMP 

Maxxi{ui(xi): p*Txi  p*Ti + i1p*Ty*
1+...+iJp*Ty*

J 

˄ xiXi} 

3. Market clearing: for every l=1,...,L 

x*
l1+...+x*

lI  l + y*
l1+...+y*

lJ 
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(T.2) If ui are continuous utility functions representing 

relations ≥i, each of which is locally non-satiated, 

then condition 3 in D.4 is satisfied as equality 

 

(T.3) If allocation (x*
1,...,x*

I,y*
1,...,y*

J) coupled with a 

price vector p*»0 is a competitive equilibrium, then 

for every >0 the same allocation coupled with the 

price vector p* is also a competitive equilibrium. 

Thus, without a loss of generality it can be assumed 

that one of the prices is equal to 1. 
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(T.4) By the assumptions of T.2, if allocation 

(x1,...,xI,y1,...,yJ) coupled with a price vector p»0 

satisfies the condition 3 in D.4 in the form of equality 

for all goods l k and if every consumer is on his/her 

budget line, then the condition 3 in D.4 is satisfied in 

the form of equality for the good k too. 
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(D.5) Marshallian analysis of partial equilibrium. 

 

1. A market is analyzed for a single good l, which 

makes a small part of the entire economy. 

Consequently (a) income effects of price changes of 

this good, and (b) impact of this market on prices of 

other goods can be neglected. Therefore all other 

goods can be treated as one compound good 

(numeraire). Its price is equal to 1, and p denotes the 

price of the good l. 
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2. Every consumer i has a quasi-linear utility function 

ui(xi,mi) = φi(xi)+mi, where xi denotes the 

consumption of the good l, and mi is the consumption 

of the compound good. The set of consumption 

alternatives is Xi=+ (negative consumption of 

the compound good is accepted in order to rule out 

corner solutions). It is assumed that the function φi is 

constrained from above and twice differentiable with 

φi'(xi)>0 and φi"(xi)<0 for all xi0. Allowing for a 

parallel translation (see T.3 from lecture 1), it can be 

assumed that φi(0)=0. 
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3. The quantity of the compound good used by the firm j 

in order to produce qj0 units of the good l  is cj(qj) 

(where cj is a cost function as defined in D.8 in lecture 3). 

Denoting by zj the use of of the compound good in the 

firm j, its production set is defined as 

Yj={(–zj,qj): qj0 ˄ zjcj(qj)}. 

It is assumed that the function cj is twice differentiable 

with cj'(qj)>0 and cj"(qj)0 for qj0. 
 

4. There is no initial endowment of the good l  (its supply 

comes from the current production only). Initial 

endowments of the compound good are mi>0, and – by 

definition – m1+...+mI=m. 
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Quasi-linear preferences: fixed price (irrespective of 

the budget constraint) implies the same demand for 

good #1 (x1) 
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Not quasi-linear preferences: fixed price may imply 

different demand for good #1 (depending on the 

budgetary constraint) 
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(T.5) In the Marshallian analysis (D.5) the necessary and 

sufficient conditions are: 

1. For profit maximization (D.4.1) Max{p*qj–cj(qj): qj0}: 

p*cj'(q*
j), with equalities for q*

j>0 

2. For utility maximization (D.4.2) 

Max{mi+φi(xi): p*xi  mi + i1(p*q*
1–c1(q*

1))+...+iJ(p*q*
J–cJ(q*

J))}: 

φi'(x*
i)p*, with equalities for x*

i>0 

3. Market clearing (D.4.3): 

x*
1+...+x*

I = q*
1+...+q*

J 

Note: conditions 1–3 are independent of initial allocation 

and shares in firms 
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(T.6) 

If Maxiφi'(0) > Minjcj'(0), then x*
1+...+x*

I, q*
1+...+q*

J > 0 
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(T.7) Aggregate demand for the good l, 
x(p) = x1(p)+...+xI(p), where xi(p), the Walrasian demand 

function, is defined as the inverse to φi'. 

Note: because of quasi-linearity of functions ui, functions xi 

do not depend on wi. 

 

(T.8) The demand function in T.7 is continuous and non-

increasing for p>0; at the same time it is strictly decreasing 

for p<Maxiφi'(0). For pMaxiφi'(0) we have: x(p)=0. 
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(T.9) Aggregate supply function of the good l, 

q(p)=q1(p)+...+qJ(p), where the number qj(p) satisfies 

the equality from the condition T.5.1 for pcj'(0). If cj 

is strictly convex (then cj' is a strictly increasing 

function), then there exist only one such number; 

therefore qj (and hence also q) is a function. 

 

(T.10) The supply function from T.9 is continuous and 

non-decreasing for p>0; at the same time, it is strictly 

increasing for p>Minjcj'(0). 
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(T.11) If at least one cj is a linear function (constant 

scale effects), cj(qj)=cjqj (thus it is not strictly convex, 

but it satisfies the condition cj"0 (D.5.3)), then for 

p>cj the value of qj(p)=+ is not well-defined. 

 

(T.12) By the assumptions of T.7 and T.9, if 

Maxiφi'(0) > Minjcj'(0), 

then there exists a unique equilibrium price 

p*(Minjcj'(0),Maxiφi'(0)). Individual consumption 

and production levels are then set by x*
i=xi(p*) and 

y*
j=yj(p*), for i=1,...,I, j=1,...,J. 
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(T.13) If for every j=1,...,J there is c>0 such that 

cj(qj)=cqj, the assumptions of T.7 are satisfied, and 

Maxiφi'(0) > c, then the equilibrium price p*=c 

 

(D.6) Inverse supply function, q-1, can be interpreted as 

the marginal cost function of industry, C'(.)=q-1(.) 

 

(D.7) Inverse demand function, x-1(.) is denoted as P(.) 
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(T.14) In the Marshallian analysis dynamics of the 

equilibrium price p* resulting from imposing a tax t 

on every unit of the good l  is given by the following 

differential equation: 

p*'(t) = x'(p*(t)+t)/(q'(p*(t))–x'(p*(t)+t)) 

 

(D.8) Marshallian Aggregate Surplus 

MAS(x1,...,xI,q1,...,qJ) = 

φ1(x1)+...+φI(xI) – (c1(q1)+...+cJ(qJ)) 
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(T.15) In the Marshallian analysis allocation 

(x*
1,...,x*

I,q*
1,...,q*

J) is Pareto optimal if and only if it 

solves the problem 

Max {MAS(x1,...,xI,q1,...,qJ): x1+...+xI–(q1+...+qJ)=0, 

x1,...,xI,q1,...,qJ0} 

Proof: 

 

 It needs to be proved that maximizing MAS implies 

Pareto optimality. To this end let us assume that 

(x1
0,...,xI

0,q1
0,...,qJ

0) maximizes this surplus and let us 

consider the utilities achieved by consumers 

ui(xi
0,mi

0)=φi(xi
0)+mi

0, where the quantities mi
0 of the 
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Proof (cont.) 

compound good left once the cost of producing the 

analyzed good satisfy the equation: 

m1
0+...+mI

0 = m−(c1(q1
0)+...+cJ(qJ

0)) 

(notation as in D.5). Therefore the sum of these 

utilities 

u1(x1
0,m1

0)+...+uI(xI
0,mI

0) = 

= φ1(x1
0)+m1

0+...+φI(xI
0)+mI

0 = 

= φ1(x1
0)+...+φI(xI

0)+ m−(c1(q1
0)+...+cJ(qJ

0)) = 

= φ1(x1
0)+...+φI(xI

0) – (c1(q1
0)+...+cJ(qJ

0))+ m = 

= MAS(x1
0,...,xI

0,q1
0,...,qJ

0)+ m. 



  

  

PhD-5-22 

 

By the assumption this surplus is the maximum of all 

possible surpluses, and  m is a constant. 

Consequently (x1
0,...,xI

0,q1
0,...,qJ

0) must be a Pareto 

optimum, since it is not possible to increase a 

consumer's utility by choosing an alternative 

allocation, unless the sum of utilities of other 

consumers is decreased. 

 

 Now we will demonstrate that if an allocation does 

not maximize the surplus, it cannot be Pareto optimal. 

Therefore let us assume that 
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Proof (cont.) 

φ1(x1
0)+...+φI(xI

0) – (c1(q1
0)+...+cJ(qJ

0)) < 

φ1(x1')+...+φI(xI') – (c1(q1')+...+cJ(qJ')). 

This will imply that (x1
0,...,xI

0,q1
0,...,qJ

0) cannot be 

Pareto optimal. By adding to both sides of this 

inequality the number m, and by defining the total 

quantity of the compound good at the left hand side 

as m1
0+...+mI

0 = m−(c1(q1
0)+...+cJ(qJ

0)) and 

m1'+...+mI' = m−(c1(q1')+...+cJ(qJ')) at the right hand 

side, we get the following sequence of inequalities: 

φ1(x1
0)+...+φI(xI

0)+ m – (c1(q1
0)+...+cJ(qJ

0)) < 

φ1(x1')+...+φI(xI')+ m – (c1(q1')+...+cJ(qJ')), 
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Proof (cont.) 

φ1(x1
0)+...+φI(xI

0)+m1
0+...+mI

0  < 

φ1(x1')+...+φI(xI')+m1'+...+mI', 

φ1(x1
0)+m1

0+...+φI(xI
0)+mI

0  < 

φ1(x1')+m1'+...+φI(xI')+mI', 

that is 

u1(m1
0,x1

0)+...+uI(mI
0,xI

0) < u1(m1',x1')+...+uI(mI',xI'), 

or in short: 

u1
0+...+uI

0 < u1'+...+uI'. 
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Proof (cont.) 

Since the inequality is a strict one, let α>0 be a 

number such that 

α = u1'+...+uI'–(u1
0+...+uI

0). 

To complete the proof let us define the following 

distribution of utilities (u1",...,uI"). Namely, let ui"=ui
0 

for i=2,3,...,I and u1"=u1
0+ α, which will make it 

obvious that (u1
0,...,uI

0) was not a Pareto optimum. 

The distribution will be defined as follows. The 

starting point is (u1
0,...,uI

0): 

ui
0 = ui

0+ui'–ui' = ui'+ui
0–ui' = ui'+Ti = ui", 
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Proof (cont.) 

where Ti = ui
0–ui' for i=2,3,...,I; and u1" = u1

0+α = 

u1
0+u1'–u1'+α = u1'+ u1

0–u1'+α = u1'+T1, where T1 = 

u1
0–u1'+α. The feasibility of defining such a 

distribution can be proved by checking that 

T1+T2+...+TI = 0 (in other words, it can accompany 

the allocation (x1',...,xI',q1',...,qJ') by transferring the 

compound good appropriately). Indeed 

T1+T2+...+TI = u1
0–u1'+α+u2

0–u2'+...+ uI
0–uI' = 

u1
0+...+uI

0–(u1'+...+uI')+α = –α+α = 0. 
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(T.16) The first theorem of welfare economics 

In the Marshallian analysis, if an allocation 

(x*
1,...,x*

I,q*
1,...,q*

J) coupled with the price p* make a 

competitive equilibrium then the allocation is Pareto 

optimal 

Proof: 

T.5 on competitive equilibrium in Marshallian 

analysis implies that for every i=1,...,I and j=1,...,J: 

1. p*cj'(q*
j), and equality holds if q*

j>0, 

2. φi'(x*
i)p*, and equality holds if x*

i>0, 

3. x*
1+...+x*

I = q*
1+...+q*

J. 
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Proof (cont.) 

Let us substitute λ=p*, then – by the Kuhn-Tucker 

theorem for the problem of maximizing the surplus – 

the conditions are both necessary and sufficient for 

solving this problem. T.15 implies then that 

(x*
1,...,x*

I,q*
1,...,q*

J) is a Pareto optimum. 
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(T.17) The second theorem of welfare economics 

In the Marshallian analysis, for any Pareto optimum 

(u0
1,...,u0

I) transfers (T1,...,TI) of the compound good 

which satisfy the condition T1+...+TI=0 can be made 

such that a competitive equilibrium triggered by the 

initial allocation (m1+T1,...,mI+TI) and by a price p* 

lets achieve this Pareto optimum. 
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Proof: 

The theorem predicts achieving the Pareto optimum 

following some transfers, i.e. enjoying the original level of 

utility by all consumers; this does not imply, however, that in 

the equilibrium every consumer will consume the original 

(initial) amount of the analyzed good and will enjoy the 

original (initial) amount of the compound good. Nevertheless 

T.15 implies that every Pareto optimum lets enjoy the same – 

maximum – sum of utilities. Let (u0
1,...,u0

I) be a Pareto 

optimum where u0
i = ui(xi

0,mi
0) = φi(xi

0)+mi
0 (quantities mi

0 

of the compound good left once the cost of production of the 

analyzed good are paid satisfy the equation m1
0+...+mI

0 = 

m−(c1(q1
0)+...+cJ(qJ

0))). T.15 implies that 

(x0
1,...,x0

I,q0
1,...,q0

J) maximizes the surplus. 
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Proof (cont.) 
Now let (x*

1,...,x*
I,q*

1,...,q*
J) be an arbitrary competitive 

equilibrium. Its existence results from the assumptions of the 

Marshallian analysis. Namely, if Maxiφi'(0)>Minjcj'(0), then 

the equilibrium exists by T.6. Otherwise let us put 

p*=(Minjcj'(0)+Maxiφi'(0))/2. It is easy to check that by this 

price there is the following trivial equilibrium 

x*
1=...=x*

I=q*
1=...=q*

J=0. In both cases the existence of 

equilibrium is guaranteed, and T.5 implies that its conditions 

(including equilibrium prices) do not depend on the quantity 

of the compound good ωm or its distribution (ωm1,...,ωmI). 

Hence it is possible to change the quantity of the compound 

good or its distribution without affecting the price p*. For that 

reason it can be assumed that in the equilibrium the sum 
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Proof (cont.) 
of utilities (which depends on the quantity of the compound 

good, among other things) is the same as in the original 

Pareto optimum: 
 

u0
1+...+u0

I = u*
1+...+u*

I, and u*
i=φi(xi

*)+mi
* for i=1,...,I. 

 

Now we will define transfers T1,...,TI by the formula Ti = 

φi(xi
0)+mi

0–(φi(xi
*)+mi

*). Their sum 

T1+...+TI = u0
1+...+u0

I – (u*
1+...+u*

I) = 0. 

The utility achieved by the i-th consumer in the equilibrium 

following the transfer is φi(xi
*)+mi

*+Ti = 

φi(xi
*)+mi

*+φi(xi
0)+mi

0–(φi(xi
*)+mi

*) = φi(xi
0)+mi

0, i.e. exactly 

what it was in the original Pareto optimum. 
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(D.9) Marshallian welfare model 

In Marshallian analysis we assume that for any 

consumption level x of good l its allocation is optimal 

(i.e. if x=x1+...+xI, then φi'(xi)=P(x) for every i). 

Moreover we assume that for any production level q 

of the good l its allocation is optimal (i.e. if 

q=q1+...+qJ, then cj'(qj)=C'(q) for every j). 
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(T.18) Conditions of D.9 are satisfied if all the 

consumers are pricetakers and they face the same 

price, and if all the producers are pricetakers and they 

face the same price. (Note: the price faced by the 

consumers does not have to be the same that is faced 

by the producers.) 

 

(T.19) In the Marshallian welfare model 

S(x) = S0 + 0∫x(P(s)–C'(s))ds, where: 

S(x) = MAS(x1,...,xI,q1,...,qJ), and 

S0 = MAS(0,...,0,0,...0) 
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(T.20) Surplus decomposition in the Marshallian welfare 

model with a tax (notation as in D.8, D.9 and T.14): 
DWL = S*(x*(0))–S*(x*(t)) = 

 –x*(0)∫x*(t)(P(s)–C'(s))ds = 

 CS(p*(0))–CS(p*(t)+t) + (p*(0))–(p*(t)) – tx*(t) = 

 p*(0)∫p*(t)+tx*(s)ds + p*(t)∫p*(0)q*(s)ds – tx*(t), 

where: 

 DWL – Deadweight welfare loss resulting from the tax, 

 x*(t) – equilibrium demand after the tax t, 

 q*(t) – equilibrium supply after the tax t, 

 p*(t) – equilibrium price after the tax t, 

 CS(p) – aggregate consumer surplus by the price p, 

 (p) – aggregate producer surplus by the price p 
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(D.10) Long term competitive equilibrium 

Triple (p*,q*,J*), where 

J* – number of firms active in the market (i.e. with 

positive production). 

Assumptions: 

1. All firm are pricetakers and identical 

2. For every firm c(0)=0 

3. Every firm is a profit maximizer: 

q* solves the PMP, Maxq0{p*q–c(q)} 

4. The demand meets the supply: x(p*)=J*q* 

5. There is free entry: p*q*–c(q*)=0 
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(T.21) In the model defined by D.10: 

1. If the production has strictly decreasing scale 

effects (the function c is strictly increasing and 

convex) and x(c'(0))>0, then there is no equilibrium 

defined by D.10 

2. If the production has constant scale effects 

(c(q)=c0q, c0=const>0), then p*=c0 and J*q*=x(c0) 

3. If there is q0>0 such that c(q0)/q0=Minq0{c(q)/q}, 

and qq0 [c(q0)/q0<c(q)/q], c0=c(q0)/q0 and x(c0)>0, 

then (c0,q0,x(c0)/q0) is the only triple which satisfies 

D.10 
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Non-technical summary 

 
A. The competitive equilibrium model assumes full 

"commercialization" of the consumption: consumption 

expenditures are equal to revenues from selling 

endowments and revenues from profits made by 

(co-)owned firms. 

 

B. The Marshallian analysis of partial equilibrium rests on 

the assumption that – thanks to the quasi-linearity of the 

utility function – it is possible to confine the analysis to 

changes in one market only, and looking at other prices 

and quantities as fixed. 
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C. Definition of Pareto optimum is independent of 

allocation and production mechanism (in particular it 

does not have to be a market mechanism). 

 

D. Welfare economics theorems suggest that Pareto optima 

and competitive equilibria are equivalent. 

 

E. In the Marshallian analysis of partial equilibrium changes 

in welfare – e.g. resulting from imposing a tax – can be 

assessed by analysing economic surplus. 

 

F. Long-term equilibrium is determined by the zero-profit 

condition (free entry). 
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6. External effects and public goods 

 

(D.1) Externality: activity of an economic agent affects a 

consumer's welfare or a firm's production possibility 

directly. 
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(D.2) Model of a bilateral externality 

Let I=2. It is assumed that utilities depend not only on 

the bundle purchased, but also on the activity h0 

undertaken by the consumer i=1: ui(x1i,...,xLi,h) for 

i=1,2, and ∂u2/∂h0. In equilibrium the consumers 

enjoy utilities vi(p,wi,h) = Maxxi0{ui(xi,h): 

p*Txiwi}. It is also assumed that utilities are quasi-

linear functions with respect to the compound good, 

so vi(p,wi,h) = φi(p,h)+wi. Functions φi(p,.) are 

strictly concave with respect to h (i.e. ∂2φi/∂h2<0). 
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(T.1) The first order condition for Pareto optimality of 

the externality is: 

∂φ1(p,h0)/∂h  -∂φ2(p,h0)/∂h, and if h0>0, then the 

equality holds 

 

(T.2) Existence of the bilateral externality (D.2) implies 

that the market equilibrium h* can be non Pareto 

optimal. Let h*,h0>0 (internal solutions). If h0 is a 

Pareto optimum then: 

∂φ2/∂h<0  h*>h0 and ∂φ2/∂h>0  h*<h0 
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(D.3) Pigouvian tax 

Tax rate: th = -∂φ2(p,h0)/∂h; tax due: th(h-ho), where 

ho – tax threshold 

 

(T.3) For any threshold, a Pigouvian tax for a bilateral 

externality (D.2) causes that market equilibrium is 

Pareto optimal 
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(T.4) Coase Theorem 

A bilateral externality (D.2) holds, but consumers – by 

offering compensations – can agree on its level without 

paying transaction costs. If the consumer 2 has the right 

to prevent the consumer 1 from generating the 

externality, then the consumer 1 can motivate the 

consumer 2 to voluntarily waive this right in exchange 

for a money compensation. If the consumer 1 has the 

right to generate the externality, then the consumer 2 can 

motivate the consumer 1 to voluntarily waive this right in 

exchange for a money compensation. In both cases the 

same Pareto optimum level of the externality will be 

achieved. 
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(T.5) If the bilateral externality (D.2) can be traded, then 

market equilibrium will be established in a Pareto 

optimum. 

 

(D.4) Public good: a good that satisfies two conditions: 

(1) its consumption by one user does not preclude its 

consumption by another user (so-called non-rivalry 

principle), and (2) if a unit of the good was supplied, 

then nobody can be excluded from using it (so-called 

non-exclusion principle). Goods which violate both 

conditions are called private ones (such goods were 

analyzed in previous lectures) 
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(D.5) Public good model 

Let I consumers use a public good x (in addition to 

private ones xl; l=1,…,L). It is assumed that their 

utilities are quasi-linear with respect to the compound 

good representing all private goods (their prices do 

not depend on the public good consumption). In 

equilibrium the consumers achieve utilities 

vi(p,x,wi,ci) = Maxxi0{ui(xi,x,wi): pTxiwi-ci(x)}, 

where ci(x) is a part of the public good provision 

financed by the consumer i and xi=[xi1,…, xiL]T is 

vector of all private goods consumed by i. Please note 

that a specific optimum combination of private goods 
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Public good model (cont.) 

may depend on prices p (that are common for all the 

consumers), and utility specification ui (different for 

every consumer).Thus vi(x,wi,ci) = φi(p,x)+wi-ci(x). It 

is assumed that for every p functions φi(p,.) are twice 

differentiable with ∂2φi/∂x2<0 for x0. Function c is 

twice differentiable with c">0 for x0. If ∂φi/∂x>0 

and c'>0, then the public good is a desired one and its 

production cost is positive. It is also conceivable that 

∂φi/∂x<0 and c'<0; the good is then an undesired one, 

and its reduction requires expenditures. 
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(T.6) The quantity x0 of the public good satisfying D.5 is 

Pareto optimal, if ∂φi/∂x>0 and c'>0, it solves the 

problem Maxx0{φ1(p,x)+...+φI(p,x)-c(x)}. The 

following first order condition is both necessary and 

sufficient: ∂φ1(p,x0)/∂x+...+∂φI(p,x0)/∂x  c'(x0), and 

if x0>0, then equality holds. 
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(T.7) Let prices p be fixed. Then utilities achieved by 

consuming the public good in D.5 (for ∂φi/∂x>0 and 

c'>0) can be written briefly as φi(x). Let us assume that 

units of the public good can be individually purchased at 

the price p, so that x1+...+xI=x is the aggregate demand 

for this good purchased – unit by unit – by the 

consumers. In equilibrium the consumers solve the 

optimization problem Maxxi0{φi(xi+kixk
*)-p*xi}, under 

the assumption that the equilibrium price p* is fixed and 

so are equilibrium quantities xk
* purchased by other 

consumers (Nash equilibrium). The first order conditions 

(necessary and sufficient) are φi'(xi
*+kixk

*)  p*, and if 

xi
*>0, then equality holds. 
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(T.8) By the assumptions of T.7, if the supply of the 

public good is provided by a profit-maximizing 

producer – who solves the problem Maxq0{p*q–c(q)} 

– then the first order condition (necessary and 

sufficient) is p*c'(q*), with the equality whenever 

q*>0. 

 

(T.9) By the assumptions of T.7 and T.8, if I>1 and 

x0>0, then φ1'(q*)+...+φI'(q*) > c'(q*), which precludes 

the Pareto optimality of q*. Moreover: q*<x0. 
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(T.10) If in T.7 the equality φi'(x*) = p*, is satisfied for 

the ith consumer only, then x1
*= ... =xi-1

* = xi+1
* = ... 

= xI
* = 0. A free riding takes place. 

 

(T.11) The non-optimality of the equilibrium from T.9 

can be interpreted as a result of a positive externality 

(ignored by the market) which emerges when 

somebody purchases a unit of the public good 

individually. 
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(D.6) Lindahl equilibrium 

The public good is sold individually (as if it were a 

private good), and it is 'dedicated' to individual 

consumers. Hence every consumer may pay a 

different price pi
**. By the notation of T.7, in 

equilibrium consumers solve optimization problems 

Maxxi0{φi(xi)-pi
**xi} with the first order condition 

(necessary and sufficient) φi'(xi
**)pi

** with equality 

for xi
**>0. 
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Lindahl equilibrium (cont.) 

It is assumed further that the bundle of these 

'dedicated' public goods is produced by a price-taking 

firm with a technology characterized by full 

complementarity: x1=...=xI=q. Thus in equilibrium, 

the firm solves the optimization problem 

Maxq0{(p1
**+...+pI

**)q-c(q)} with first order 

condition (necessary and sufficient) 

p1
**+...+pI

**c'(q**) with equality for q**>0. 
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(T.12) In the Lindahl equilibrium (D.6 with market 

clearing condition xi
**=q** for i=1,...,I) q**=x0 (i.e. the 

equilibrium is Pareto optimal). 

 

(D.7) A multilateral externality is called depletable or 

private, if its impact on one agent diminishes its 

impact on other agents. If its impact does not depend 

on the number of affected agents, then it is called 

non-depletable or public. 
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(T.13) T.5 is valid for depletable multilateral 

externalities, but not necessarily for non-depletable 

ones. 
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Market failure (negative externalities) 
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(T.14) Weitzman rule 

 
 

Case I: ∂2φ1(p,h0,)/∂h2 

> -∂2φ2(p,h0)/∂h2 

Case II: ∂2φ1(p,h0,)/∂h2 

< -∂2φ2(p,h0)/∂h2 
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(T.14) Weitzman rule (cont.) 
 

In the bilateral externality model (D.2) it is assumed that φ1 

depends on some parameter  such that 

∂φ1(p,h,)/∂h=∂φ1(p,h,0)/∂h+, but φ2 does not depend on 

it. The true value of 0 is known to the consumer 1, but 

the government thinks it is 0. Based on this (inaccurate) 

knowledge the government wishes to arrive at the optimum 

level of the externality h, i.e. to satisfy the equality 

∂φ1(p,h0,)/∂h=-∂φ2(p,h0)/∂h (assuming that h0>0). If 

∂2φ1(p,h0,)/∂h2 > -∂2φ2(p,h0)/∂h2, then the loss of MAS 

caused by the (inaccurate) regulation caused by the 

Pigouvian tax th (D.3) is lower than the loss caused by 

requiring h0. And vice versa if the inequality is reversed. 
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(T.15) The Groves-Clarke tax 

In the bilateral externality model (D.2) let us assume that 

the externality can be either h=0 or h=1. Let 

φ1(p,0)=φ2(p,1)=0, φ1(p,1)=b, φ2(p,0)=c, and b is known 

to the consumer 1 only, and c – to the consumer 2 only. 

The consumers ought to reveal b and c by quoting 

numbers b' and c'. The government declares that it will 

mandate h=0, if c'b' or h=1, if c'<b'. Moreover in the 

latter case it will impose a tax c' on the consumer 1 and it 

will give a subsidy b' to the consumer 2. If such a 

mechanism is deployed both consumers are better of 

when they reveal b'=b and c'=c (i.e. truthfully reveal their 

preferences). 
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Non-technical summary 

 

A. Externalities – both positive and negative – take place 

when someone's consumption activities have a direct 

impact on someone else's utility. Equilibrium does 

not have to be Pareto optimal. 

 

B. All the corollaries on externalities involving 

consumers apply to producers as well. Utilities are to 

be substituted with profits. 
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C. In the presence of an externality a Pareto optimum 

can be attained as a result of government intervention 

either by a direct (quantity) regulation or by indirect 

regulation using a Pigouvian tax. 

 

D. In special cases (a bilateral, i.e. a depletable 

externality) a Pareto optimum can be attained by 

trading externalities. 
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E. A public good and a non-depletable externality linked 

to it cannot be traded like a depletable one. It is 

difficult to operationalize a Lindahl equilibrium 

which theoretically exists under these circumstances. 

 

F. Maximization of the economic surplus under 

externalities and imperfect information demonstrates 

the asymmetry of quantity and tax regulation 

(Weitzman rule). Information can be acquired by the 

government by applying certain incentives like the 

Groves-Clarke tax. 
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7. Imperfect competition 

 

(D.1) Monopoly optimization problem 

Maxp{px(p)–c(x(p))} or Maxq0{p(q)q–c(q)}, where 

x(.) is continuous and strictly decreasing for p such 

that x(p)>0; p(.) is an inverse demand function (we 

define p(0)=p0, where p0 is the lowest price such that 

x(p)=0). It is also assumed that p(.) and c(.) are twice 

differentiable for q0, p(0)>c'(0), and there exists a 

unique q0(0,), such that p(q0)=c'(q0) (this is the 

supply which maximizes economic surplus). 
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(T.1) The solution of the monopoly optimization 

problem (D.1), qm, satisfies the following first order 

condition (necessary): p'(qm)qm+p(qm)=c'(qm). This 

also implies that p(qm)>c'(qm) and qm<q0. The 

deadweight welfare loss is then equal to qm∫q0(p(s)–

c'(s))ds. 

 

(T.2) If in the monopoly model D.1 p(q)=a–bq and 

c(q)=cq, where a>c0, b>0 then q0=(a–c)/b, 

p0=p(q0)=c, qm=(a–c)/2b and pm=(a+c)/2. 
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Monopoly – DWL 
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Duopoly 

 

• yi – supply from the ith rival 

• y – aggregate supply 

• pi – price announced by the ith rival 

• p – price determined by the market 
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Duopoly (cont.) 

 

1. Bertrand: both rivals make price decisions 

simultaneously 

2. Cournot: both rivals make quantity decisions 

simultaneously 

3. Price leadership: one makes a price decision first 

4. Quantity leadership (Stackelberg): one makes a 

quantity decision first 
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Duopoly (cont.) 
 

• Determine a demand that the market will reveal: D(p)=y 

• Let piyi-TC(yi) be the profit enjoyed by the ith firm (TC – 

total cost) 

• Let pi
* and yi

* be profit maximizing decisions of the ith 

firm 

• Firm i makes its decisions which maximize its profit, 

taking into account expected decisions of its rivals 

• We look for an equilibrium in a sense that all firms make 

decisions exactly as they were expected by their rivals 
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(D.2) Bertrand model 

A duopoly acts in the market characterized by a 

demand function x(.). The function is continuous and 

strictly decreasing for p such that x(p)>0, and there 

exists p0< such that x(p)=0 for pp0. Both firms 

display constant scale effects with unit production cost 

c>0. It is assumed that x(c)(0,). The firms compete 

with each other by simultaneously announcing prices 

for their products, p1 and p2, respectively. The sales are 

then denoted as: xj(pj,pk)=x(pj) if pj<pk, xj(pj,pk)=x(pj)/2 

if pj=pk and xj(pj,pk)=0 if pj>pk. The profits of the firms 

are given by the formula j(pj,pk)=(pj–c)xj(pj,pk). 
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(T.3) There is the unique Nash equilibrium in a Bertrand 

duopoly model: (p1
*,p2

*)=(c,c). 

 

(D.3) Cournot model 

A duopoly acts in the market characterized by an inverse 

demand function p(.). The function is differentiable and 

p'(q)<0 for q0. Both firms display constant scale effects 

with unit production cost c>0. It is assumed that p(0)>c 

and there exists the unique production level q0(0,) 

such that p(q0)=c (i.e. q0=x(c)). The firms compete with 

each other by simultaneously taking supply decisions: q1 

and q2, respectively. The price is then calculated as 

p(q1+q2), and firms' profits are j(qj,qk)=(p(q1+q2)–c)qj. 
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(T.4) In the Cournot model each Nash equilibrium 

(q1
*,q2

*) must satisfy the following conditions: 

• p'(q1
*+q2

*)q1
*+p(q1

*+q2
*)c and equality holds if 

q1
*>0 

• p'(q1
*+q2

*)q2
*+p(q1

*+q2
*)c and equality holds if 

q2
*>0, and 

• p'(q1
*+q2

*)(q1
*+q2

*)/2+p(q1
*+q2

*)=c. 
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Proof: 

Both inequalities result from the Kuhn-Tucker 

theorem for optimization problems of both duopolists 

(i.e. Maxqi{(p(q1+q2)-c)qj.}). It will be demonstrated 

that both solutions have to be positive. Let us assume 

that – conversely – for instance q1
*=0. Then the first 

inequality is reduced to p(q2
*)≤c. By analyzing the 

second inequality, it will be used to demonstrating 

that q2
*=0 as well. If it is assumed that – on the 

contrary – q2
*>0, then p'<0 (condition listed in D.3) 

implies p'(q2
*)q2

*+p(q2
*)<c, and consequently q2

*=0, 

and thus a contradiction. Hence q2
*=0. 
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Proof (cont.) 

But then both the first and the second inequality 

reduces to p(0)≤c, which contradicts another 

condition of the Cournot model, i.e. p(0)>c. 

Therefore q1
*>0. Likewise it can be proved that 

q2
*>0. Consequently both inequalities from the 

theorem turn out to be equalities. By adding these 

equalities and dividing into 2, we get final equality 

from the theorem. 
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(T.5) In the Cournot model the Nash equilibrium price is 

higher than c (the competitive price), but lower than 

the monopoly price 

Proof: 

The inequality p*>c results from T.4. It needs to be 

proved that q1
*+q2

*>qm (which will imply that p*<pm). 

Let us – on the contrary – assume that q1
*+q2

*<qm. 

Then the firm 1 could increase its supply to qm-q2
* 

(higher than q1
*). The sum of profits will incresase 

(by the definition of the monopolistic quantity). 

However, the price would decrease resulting in a 

lower profit of the firm 2. 
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Proof (cont.) 

This implies that the profit of the firm 1 would 

increase. Hence (q1
*,q2

*) could not have been a Nash 

equilibrium. Consequently qm≤q1
*+q2

*. Yet the 

equality from T.4 excludes qm=q1
*+q2

* (the latter 

equality implies p'(qm)qm/2+p(qm)=c which 

contradicts the condition from T.1) 

 

(T.6) In the Cournot model with a linear inverse demand 

function p(q)=a-bq (with a>c0 and b>0) the Nash 

equilibrium involves q1
*=q2

*=(a-c)/3b and the price 

p(q1
*+q2

*)=(a+2c)/3  (c,pm) 
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(D.4) Oligopolistic Cournot model 

The definition D.3 has an obvious generalization for J 

firms (J1) such that it corresponds to D.3 for J=2 

 

(T.7) Let QJ
* be an aggregate supply in an oligopolistic 

Cournot model. The necessary condition for the Nash 

equilibrium is then: p'(QJ
*)QJ

*/J+p(QJ
*)=c. 



  

  

PhD-7-15 

 

(T.8) In the oligopolistic Cournot model for J1 firms 

with a linear inverse demand function as in T.6 the 

Nash equilibrium is given by 

q*(J)=q1
*=...=qJ

* = (a-c)/(b(J+1)). 

The equilibrium price is then 

p*(J)=a-(a-c)J/(J+1), 

and the firms' profits are 

*(J)=1
*=...=J

* = (a-c)2/(b(J+1)2). 

 

(T.9) In the T.8 model p* and * are decreasing functions 

of J, limJ→p*(J)=c, limJ→*(J)=0 and 

limJ→Jq*(J)=(a-c)/b 
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(D.5) Two-stage entry game 

Stage I. All firms take simultaneous decisions 

whether to enter. Every entering firm pays an entry 

cost K>0. Stage II. The firms who entered the market 

play an oligopolistic game (e.g. as in D.4) 

 

(T.10) In a two-stage entry game as in D.5 in every 

SPNE the number of firms J* which enter the market 

satisfies: *(J*)K and *(J*+1)<K 
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(T.11) If in a two-stage entry game the second stage game is as 

in T.8, then J* = [(a-c)/(bK)1/2-1] 

Proof: 

By T.8 the following inequalities must be satisfied (otherwise 

J* cannot be the number of firms in SPNE): 

(a-c)2/(b(J+1)2)≥K and (a-c)2/(b(J+2)2)<K. By taking square 

roots of both sides one gets (a-c)/(b1/2(J+1))≥K1/2 and 

(a-c)/(b1/2(J+2))<K1/2. By rearranging these expressions one 

gets J+1≤(a-c)/(bK)1/2 and J+2>(a-c)/(bK)1/2. In other words 

(a-c)/(bK)1/2-1<J+1≤(a-c)/(bK)1/2 

i.e. (a-c)/(bK)1/2-2<J≤(a-c)/(bK)1/2-1. There is only one 

integer satisfying these conditions: J=[(a-c)/(bK)1/2-1] (square 

parenthesis stands for the 'entier' function). 
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(D.6) Oligopolistic Bertrand model 

Definition D.2 can be generalized in an obvious way 

for J firms (J1) such that for J=2 it is satisfied as a 

special case. 

 

(T.12) If in a two-stage entry game, the game played in 

the second stage is like in D.6, then – assuming that 

m>K – we have: J*=1 
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(T.13) If in a two-stage entry game, the game played in 

the second stage is like in T.8, then J0, the number of 

firms which maximizes MAS, i.e. 

W(J) = 0∫Qp(s)ds-J(cq*(J)+K), 

can be calculated from the condition W'(Jr)=0, that is 

(Jr+1)3=(a-c)2/(bK). If Jr is integer then J0=Jr. 

Otherwise J0=[Jr] or J0=[Jr]+1. 
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(D.7) Dynamic Bertrand model 

A duopoly satisfies the Bertrand conditions (D.2), but 

decisions are taken many times – over and over again. 

Having completed their sales as a result of playing a 

single stage game, the firms can (simultaneously) 

announce new prices. It is assumed that firms (j=1,2) 

maximize the sum of discounted future profits using 

the discount rate >0: 

j1+j2/(1+)+j3/(1+)2+j4/(1+)3+... 

The game is finite if the firms play it T times, or 

infinite if the firms play it infinitely many times. 
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Discounting 

 

A discount rate () – a parameter used in economics in 

order to compare amounts (e.g. profits) occurring in 

different time moments. The amount x to occur a year 

from now corresponds to x/(1+) presently (so-called 

"present value"). 
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(T.14) If the game in a dynamic Bertrand model (D.7) is 

finite then there exists the unique SPNE. It includes 

Nash strategies for a single stage, i.e. (c,c). 

 

(D.8) Nash reversion strategy 

In a dynamic Bertrand model we define 

Ht-1={(p11,p21),(p12,p22),(p13,p23),...,(p1t-1,p2t-1)} 

(history of applied strategies). In stage t firms choose 

strategies pjt(Ht-1)=pm if t=1 or if Ht-1 includes only 

the elements (pm,pm); otherwise pjt=c. 
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(T.15) If the game in a dynamic Bertrand model is 

infinite then the Nash reversion strategy (D.8) is 

SPNE if and only if 1 

 

(T.16) If the game in a dynamic Bertrand model is 

infinite and 1, then every consistent choice of any 

fixed price p[c,pm] enforced by the Nash reversion 

strategy is SPNE. 

 

(T.17) If the game in a dynamic Bertrand model is 

infinite and >1, then the only SPNE includes the 

choice of the price p=c in each stage by both partners. 
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Non-technical summary 

 

A. If firms are not pricetakers then the market equilibrium 

depends on the way the firms compete with each other. For 

instance, in the short run price competition leads to an 

outcome similar to a competitive equilibrium, and quantity 

competition leads to an outcome further from a competitive 

equilibrium. 

 

B. In the long run the rivalry can be interpreted as a two-stage 

game: in the first stage firms take decisions whether to 

enter the market, and in the second stage they decide how 

to compete once they meet each other in the market. 
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C. By applying the two-stage game model one can determine 

an equilibrium number of firms (in an SPNE) which can 

survive in the market. Linear models with identical firms 

determine this number uniquely, but they do not determine 

which specific firm will be in the market. 

 

D. In the two-stage game model the equilibrium number of 

firms active in the market (in the SPNE sense) does not 

have to coincide with the socially optimum number of 

firms (in the sense of MAS maximization). For instance, if 

the second stage corresponds to the oligopolistic Cournot 

model, the equilibrium number of firms is higher than that 

maximizing the MAS. 
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E. In a finite dynamic game, any SPNE consists of Nash 

strategies for every stage. In an infinite dynamic 

game there may be SPNEs which do not confine to 

Nash strategies for single stages if any 'wrong' choice 

triggers the Nash reversion strategy. 
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8. Asymmetric information 

 

Market failure in a competitive market 
 

"Asymmetric information" = the buyer has less 

information about the commodity than the seller or vice 

versa; acquiring information is possible, but costly. 
 

Consequences of asymmetric information: 
 

• Equilibrium does not have to be a Pareto optimum; 

• Equilibrium may not exist. 
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Examples of asymmetric information: 

 

• Used cars, 

• Insurance policies, 

• Employment contracts. 
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(D.1) Competitive equilibrium in a labour market where 

the productivity  of workers is known to themselves 

only, but employers know their statistical distribution 

is a pair: 

 * = {: r()w*} 

 w* = E( *), 

where r – the opportunity cost of labour (the value of 

leisure), w – wage,  – the set of all workers 

(characterized by a specific productivity); it is 

assumed that *. 
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(T.1) If r()=r=const, then in Pareto optimum workers of 

the productivity r work, and those of the 

productivity <r do not work 

 

(T.2) If r()=r=const, [min,max], and min<r<max, 

then a competitive equilibrium (D.1) will not be a 

Pareto optimum 

 

(D.2) Adverse selection: a behaviour of the agent who 

possesses information adversely affecting another 

agent who does not possess this information 



  

  

PhD-8-5 

 

(T.3) If r() for [min,max], then in a Pareto 

optimum all workers should be employed 
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(T.4) Let r()=2/3 for [0,1], with  being distributed 

uniformly on [0,1]. Then w*=0 and Θ*={0}, and since 

this is the only equilibrium, adverse selection will follow 

Proof: 

 The pair (0,{0}) makes an obvious equilibrium. We will 

demonstrate that this is a unique equilibrium. An 

equilibrium wage cannot be negative. Thus let us assume 

that w>0. Then Θ = {θ: r(θ)≤w} = {θ: 2θ/3≤w} = 

= {θ: θ≤3w/2} = [0,3w/2]. At the same time E(θ| θΘ) = 

= E(θ| θ≤3w/2) = 1/(3w/2–0) 0∫3w/2θdθ = 

= 2/(3w) [θ2/2]0
3w/2 = 3w/4 < w. Therefore no w>0 can be 

an equilibrium wage. 
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(D.3) The distribution of reservation wages r() is 

known, and so is known the distribution of 

probabilities Pr{[1,2]}. A competitive equilibrium 

with adverse selection in labour market served by 2 

firms is the outcome of a two-stage game. In the stage 

I the firms offer wages w1 and w2, respectively. In 

stage II workers make decisions whether to work for 

the firm who offers a higher wage if 

Max{w1,w2}r(). If w1=w2, the choice of the firm is 

random with equal probabilities (1/2,1/2). 
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(T.5) Let r(θ)≤θ, r is strictly increasing on [θmin,θmax], 

and its density distribution function f(θ) satisfies f>0 

on [θmin,θmax]. Let W* be the set of wages that satisfy 

the competitive equilibrium (D.1) and w*=Max{w: 

wW*}. We assume that an equilibrium is attained as 

a result of a two-stage game as in D.3. Then: 
 

1. If w*>r(min) and ε>0 w'(w*–ε,w*) [E( 

r()w')>w'], then there exists a unique (in pure 

strategies) SPNE in this two-stage game. In this SPNE 

workers employed receive the wage w*, and all the 

people from the set (w*)={: r()w*} are employed. 
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2. If w*=r(min), then there exist many SPNEs (in pure 

strategies). In each such an equilibrium both firms 

enjoy zero profits, and every worker with the 

productivity  gets the revenue r() (either as a wage or 

the value of leisure). 
Proof: 

 We adopt the convention that if r(θ)=w, then the 

worker accepts the work (even though he/she is 

indifferent between work and leisure). 
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Proof (cont.) 

1. Let w*>r(θmin). First we observe that in SPNE both 

firms must have zero profits. This is because if it 

were otherwise in an SPNE then by offering a wage 

w" and jointly employing M workers, they would 

enjoy a joint profit 

Π = M(E(θ|r(θ)≤w")–w") > 0. 

The positivity of this number implies the positivity 

of M (somebody was employed), and consequently 

the inequality w"≥r(θmin). Let us assume further that 

one of the firms – say, the number 1 – enjoys the 

profit not larger than Π/2. However this firm could 

enjoy the profit at least M(E(θ|r(θ)≤w"+α)-w"-α) by 
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Proof (cont.) 
offering the wage w"+α for some α>0 (claiming all 

the workers of the second firm and thus having at 

least M employees). Yet E(θ|r(θ)≤w) – as an integral 

– is continuous with respect to w, and choosing a 

sufficiently small α one can make that the profit of 

this firm is close to Π, i.e. higher than Π/2. 

Therefore firm 1 has a motivation to leave the wage 

offer w", thus contradicting our assertion that w" 

was an element of SPNE. It follows from here that 

Π≤0. But no firm can have a negative profit in an 

SPNE (since by offering a zero wage it would enjoy 

the zero profit, i.e. better than a negative one). 
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Proof (cont.) 
Therefore Π=0 and both firms must have zero profits 

in any SPNE. Knowing this, if w" is the higher wage 

offered by one of the firms in an SPNE, it must be 

either w"W* (w" must be an equilibrium wage 

satisfying D.1) or w"<r(θmin) (w" is too low to be 

accepted by anybody). Let us suppose that w"<w*. 

But then – by the assumption – each firm could yield 

a positive profit by changing its offer from w" to 

w'(w*-ε,w*), which contradicts that w" was an 

element of SPNE. Hence the higher wage offered in 

an SPNE must be w*. 
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Proof (cont.) 
 In order to complete this part of the proof, we will 

demonstrate that offering the wage w* by both firms 

and accepting the employment by workers consistent 

with the rules listed make an SPNE. From the 

previous steps of the proof it follows that both firms 

make zero profits in an SPNE. Neither of the firms 

has an incentive to unilaterally lower the wage as 

this would result in losing all the employees and 

non-attaining a positive profit. Now let us check that 

offering a higher wage is not profitable either, as 

E(θ|r(θ)≤w)<w for w>w*. By the assumption w* is 

the highest competitive wage. Therefore there is no 
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Proof (cont.) 
w>w*, such that E(θ|r(θ)≤w)=w. It follows from here 

– again by the continuity of E(θ|r(θ)≤w) with respect 

to w – the number E(θ|r(θ)≤w)–w must have the 

same sign (either positive or negative) for all w>w*. 

It cannot be positive, since when w→∞ then 

E(θ|r(θ)≤w)→E(θ), and the latter is a finite number; 

that is, for sufficiently large w, the difference must 

be negative or – equivalently –E(θ|r(θ)≤w)<w which 

completes this part of the proof. 

2. Let us assume that w*=r(θmin), that is for any w>w* 

we have E(θ|r(θ)≤w)<w (offering a wage higher than 

w* implies a loss). On the other hand, offering a 
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Proof (cont.) 
price w≤w* leads to zero profits for both firms. Thus 

the set of wage offers which can be included in an 

SPNE is {(w1,w2): w1≤w* and w2≤w*)}. They can be 

multiple, but in every case both firms have zero 

profits, and every worker gets the same amount, 

namely w*=r(θmin), that is r(θ) (i.e. r(θmin) if he/she 

belongs to the lowest productivity category and is 

employed; otherwise he/she receives r(θ) enjoying 

leisure). 
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(D.4) Signalling game 

The productivity of workers (not observable for 

employers) takes two values: L and H, with L<H. 

It is assumed that r=0 for all workers. Each worker 

may acquire a formal education e>0 (observable for 

employers) whose cost is cHe for a high productivity 

worker and cLe for a low productivity worker, with 

cH<cL. Acquiring the education e does not change the 

worker's productivity. 
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(T.6) If the level of education e=e* in D.4 is set such that 

(H–L)/cL < e* < (H–L)/cH, 

then workers of the productivity =H – and only they 

– acquire this level of education (e*) thus "signalling" 

to the employers their productivity and getting the 

wage wH=H. Other workers are employed with the 

wage wL=L. The market equilibrium achieved in this 

way is called a separating equilibrium. 
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Adding an adjective to a noun may change its meaning 

badly: "chair" → "electric chair". 

 

"Equilibrium" → "separating equilibrium" ? 

 

• Guarantees (in a second-hand car market) do not 

imply unnecessary cost. 

 

• Signalling assumes that education is irrelevant for 

economic efficiency (a1 and a2 do not depend on 

whether somebody undertook the education or not). 
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(T.7) If the productivity  of workers and the 

opportunity cost of employment r are as in D.4, then 

employers can distinguish which category they 

belong to by offering contracts such that wages 

depend on tasks that are easier to be achieved by 

high-productivity workers (screening game). 

 

In a signalling game workers assign themselves to either 

category to acquiring a diploma. Here workers assign 

themselves to either category by choosing a more or less 

ambitious employment contract. 
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(D.5) The principal-agent problem 

Stating the terms of an employment contract in order 

to overcome the asymmetric information caused by 

the fact that the "principal" cannot observe the 

amount of labour spent by the "agent". 
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(D.5) The principal-agent problem (elementary version) 

 

• x – employee's effort 

• y=f(x) – product (we assume that its price is equal to 1) 

• s(y) or s(x) – employee's salary 

• c(x) – cost born by the employee 

• u0 – employee's aspiration level: s(f(x))-c(x)  u0 

(participation constraint) 
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(D.5) The principal-agent problem (cont.) 

 

The incentive compatibility constraint is: 

s(f(x*))-c(x*)  s(f(x))-c(x) for all x, where 
 

• x* maximizes f(x)-s(f(x)), i.e. f(x)-c(x)-u0 that is (by 

conventional assumptions): 

• MP(x*) = MC(x*) 
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Examples (of incentive-compatible contracts) 
 

• Rental payment, R: s(f(x)) = f(x)-R, where R is 

derived from the participation constraint: 

f(x*)-c(x*)-R = u0 

• Hourly (daily) salary rate w plus flat rate K so that: 

s(x) = wx+K, where w=MP(x*), and K is derived 

from the participation constraint: wx+K-c(x) = u0 

• Threshold condition (take-it-or-leave-it), payment B, 

if xx* (alternatively: if yf(x*)): the amount B is 

calculated from the participation constraint: 

B-c(x*) = u0 (assuming that BMP(x*)) 
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Example (of a not incentive-compatible contract) 
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(D.6) Moral hazard (hidden actions) 

Specifications of the contract from D.5 are as follows. 

Let  be the (observable) profit from a project, 

and e – the level of effort spent by the agent (it can be 

non-observable by the principal). It is assumed that 

eE={eL,eH}. The profit  is a realization of a 

random variable whose values are in the interval 

=[min,max] with a conditional density function 

f(e)>0 for all  and eE (i.e. no realization of π 

determines a specific level of effort e uniquely). 

However ∫f(eH)d > ∫f(eL)d. 
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Moral hazard (cont.) 

 

The agent maximizes his/her utility function given by 

the formula u(w,e)=v(w)–g(e), where w() is the 

wage resulting from the contract, v'>0, v"0 and 

g(eH)>g(eL). The agent accepts the contract only if its 

terms let him/her enjoy the reservation utility u0. The 

principal maximizes the project's profit net of the 

wage paid to the agent: ∫(–w())f(e)d (the net 

profit). 
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(T.8) If the effort e is observable by the principal then 

the contract from D.6 must determine that the agent 

spends the effort e* which solves the optimization 

problem 

Maxe{∫f(e)d–v-1(u0+g(e))} 

and receives a fixed wage w*=v-1(u0+g(e*)). If v"<0, 

then this is the only optimal contract. 

 

(T.9) By the assumptions of T.8, if v(w)=w, then the 

optimum amount of the effort e* solves the problem 

Maxe{∫f(e)d–(u0+g(e))} 
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(T.10) In model D.6, if the agent's effort is not 

observable, and the agent is neutral with respect to 

risk, then an optimum contract triggers the same level 

of effort e*, wage w* and the net profit for the 

principal as in T.9. The wage is given by the formula 

w()=–*, where *=∫f(e*)d–(u0+g(e*)). 
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(T.11) In model D.6, if the agent's effort is not 

observable, and the agent is risk averse, then the 

optimum contract solves the problem 

Minw(){∫w()f(e*)d: (i) ˄ (ii)}, where the 

conditions (i) and (ii) are given by: 

(i) ∫v(w())f(e*)d–g(e*)u0 

(ii) e* solves the problem Maxe{∫v(w())f(e)d–

g(e)} 

Condition (ii) is called the incentive compatibility 

constraint 
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(T.12) By the assumptions of T.11 the expected wage for 

the effort eH is higher than in T.8. In contrast, the 

expected wage for the effort eL is fixed and equal to the 

amount from T.8. Hence, if the optimum effort e*=eH, 

then the non-observability of the effort causes welfare 

loss. 

 

(T.13) In model D.6 the non-observability of effort leads 

to its lowering by the agent. A generalization of the 

model by assuming that E contains more two points 

implies that the effort is not optimal, but it does not 

allow to determine that it is lower than the optimal one. 
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(D.7) Auctions 

Let us assume that the principal has an object for sale. It can 

be purchased by either of two agents which value the object 

v1 and v2, respectively. Each valuation is known only to the 

agent who has it. Nevertheless the principal and both agents 

know the distributions of both values treated as random 

variables: θ1 for the first agent and θ2 – for the second. 

Agents are supposed to indicate their valuations as sealed 

bids s1 and s2 (which do not have to coincide with v1 and v2). 

The object goes to the agent who offered the higher bid. If 

both bidders offer the same bid then the winner is selected 

randomly with probabilities 1/2 and 1/2. 
 

Auctions vary with respect to what is the amount paid by the 

winner. 
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(D.8) First-Price Auction 

The winner pays the amount from his/her own bid 

 

(D.9) Second-Price Auction 

The winner pays the amount from the loser's bid 
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(T.14) 

Let us assume that θ1 and θ2 have the same 

distributions. In both variants of auctions the truthful 

revelation of preferences makes a Nash equilibrium in 

the 'bidding game' (in this game the payoff of the 

loser is 0, and the payoff of the winner i is vi-si in the 

first-price auction or vi-s-i in the second-price 

auction). 
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Proof: 

Let us consider the first-price auction first. The 

winner pays si, and gets the net benefit vi-si. If si>vi 

then the net benefit would be negative and the winner 

would have a motivation to be the loser rather than 

the winner. If si<vi then the winner risks losing the 

auction and hence – si makes the preferred bid. Now 

let us consider the second-price auction. The 

motivation for the winner not to overstate the bid is 

even higher than before. A likely motivation to 

understate in order to pay less disappears, because the 

winner pays the bid of loser. 
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(T.15) Revenue Equivalence Theorem 

In both types of auctions the expected revenue of the 

principal (who organizes an auction) is the same. 

Proof: 

The seller receives si of the winner (in the first-price 

auction) or si of the loser (in the second-price 

auction). By T.14, bidders indicate their true 

valuations (i.e. si=vi, for i=1,2). As vi are sampled 

from the same distributions, then Ev1=Ev2. 



  

  

PhD-8-36 

 

(T.16) Inefficiency Theorem 

Let us assume that θ1 and θ2 have strictly positive 

distributions on intervals that overlap at least 

partially. Neither of the auctions can – in general – 

provide an outcome that satisfies three conditions: 

➢ individual rationality, 

➢ incentive compatibility, and 

➢ budget balance (any payoffs for the principal need 

to be financed from agents' payments) 

(difficult to prove) 
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Non-technical summary 

 

A. In the lecture the asymmetry of information was 

explained by referring to the example of employment 

contracts. Similar problems arise in other transactions 

such as selling certain goods (e.g. used cars) or services 

(e.g. insurance policies). 

 

B. Asymmetric information affects the stage of drafting a 

contract (it may lead to adverse selection) and the stage 

of carrying out a contract (it may lead then to moral 

hazard). In both cases market equilibrium may be not 

Pareto-optimal. 
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C. The adverse selection process can be modelled as a 

two-stage game: first employers offer wages; then 

potential employees decide whether to be hired or 

not. Making the information credible through 

"signalling" overcomes the negative selection, but it 

requires to bear a cost which lowers the welfare. 

 

D. Elimination of the moral hazard may be helped by 

signing an incentive compatible contract. However, if 

the agent is risk-averse, the contract lowers the 

welfare with respect to the situation where his/her 

behaviour is observable. 
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E. Auctions provide an example of how to solicit 

information that is unknown to the principal who 

plans to sell an object. Ideas similar to those analysed 

in the class apply to buying an object or dealing with 

greater number of agents. 
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9. General equilibrium 

 

• I – the number of consumers 

• L – the number of markets (products); one of the 

commodities can be labour – i.e. a resource owned by 

every consumer 

• J – the number of firms 
 

• Numbering of consumers: i=1,...,I 

• Numbering of markets (products): l =1,...,L 

• Numbering of firms: r=1,...,J 
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The idea of the Edgeworth box 
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(D.1) Pure exchange in the Edgeworth box 

The economy has two consumers, i=1,2 and two 

goods, l =1,2 (one of the commodities can be labour – 

a resource owned by any consumer) 

Initial allocation (endowment) of the consumer i: 

 i=(i1,i2) 

Gross demand (final allocation) of the consumer i: 

 xi=(xi1,xi2) 
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• Excess demand of the consumer i: 

xi-i = (xi1-i1,xi2-i2) 

• Feasible allocation satisfies the following system of 

equations: 

➢ x1 = x11+x21 = 11+21 = 1, 

➢ x2 = x12+x22 = 12+22 = 2 

 

Edgeworth box – an analysis of feasible allocations: a 

superposition of two systems of coordinates used for 

studying consumer choices; the width of the rectangle 1 

= 11+21, its height 2 = 12+22; the second system is 

rotated by 180o. 
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Both consumers are pricetakers (they reveal their 

respective demand and a supply in response to prices 

announced by an impartial auctioneer). 
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 In the picture it is assumed that indifference curves 

IA() of the agent A are given by formulae x2A=/x1A, 

and indifference curves IB() of the agent B – by 

x2B=/x1B (,>0 – parameters). It is assumed 

additionally that the total amount of the good 1 

(owned by both agents) is 10, and the total number of 

units of the good 2 is 5. 
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 As a matter of example, it can be assumed further that 

the 10 units of the good 1 were distributed between 

agents A and B as 8:2, and the 5 units of the good 2 – 

as 3:2. These distributions (allocations) are illustrated 

by the point X0 in the picture. Let us observe that by 

the construction of the Edgeworth box this single 

point corresponds to a quadruple of numbers 8,2,2,3 

which characterize the situation. The point X0 is 

located at the A's indifference curve given by the 

formula x2A=16/x1A (=16) and at the B's indifference 

curve x2B=6/x1B (=6). 
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Agent A would prefer to be at a higher indifference 

curve, say, in the point (9,3), i.e. at the curve 

x2A=27/x1A (=27). At the same time, agent B would 

also prefer to have more of everything, say, (3,4), i.e. 

to be located at the indifference curve x2B=12/x1B 

(=12). These aspirations cannot be satisfied jointly, 

since agent A would have to be given by B one unit 

of both goods, and – vice versa – agent B would have 

to be given by A one unit of both goods, while the 

transfer of a unit from one to another implies that the 

former has less rather than more. 
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However, the analysis of the picture suggests that a 

simultaneous improvement for A and B is possible, 

since there is some area located between indifference 

curves IA(16) and IB(6), where each of the agents 

finds himself (or herself) on an indifference curve 

higher than the original one. The analysis suggests 

also that an improvement is always possible 

whenever indifference curves are not tangent to each 

other, but they intersect. 
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Hence an improvement is impossible only when 

indifference curves the allocation is included in are 

tangent to each other, i.e. agent A's improvement is 

only possible when agent B gets worse off and vice 

versa. Finding themselves in X0, the agents have an 

opportunity to improve their situation simultaneously. 

This requires that A exchanges some of the 

endowment in 1 for the good number 2 acquired from 

B. In this way the agents will move towards interior 

of the shaded area. 
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It is easy to note that if the new allocation X* was to 

be reached as a result of a voluntary exchange 

transaction, it must satisfy the condition that by 

selling a certain number of units of the good number 

1 the agent A received exactly the same amount of 

money which is necessary to purchase additional 

number of units of the good # 2, and vice versa, by 

selling some units of the good # 2, the agent B 

received exactly what was necessary in order to 

purchase additional units of the good # 1. 
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Moreover, if the transaction is to be a final one, i.e. 

its parties exhaust all possibilities of improving their 

situation (with respect to the initial endowment), then 

their indifference curves must be tangent to each 

other in X*. In addition, the tangent line must 

coincide with the straight line including all the points 

that the agents may move into from X0 and applying 

non-negative prices p1 i p2 adopted in order to make a 

transaction. 
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(T.1) In the pure exchange model the wealth of the ith 

consumer is endogenously given by prices p=(p1,p2)T: 

wi = pTi = p1i1+p2i2; consequently the budget set 

is Bi(p) = {xi+
2: pTxipTi} 

 

(D.2) Walrasian (competitive) equilibrium in an 

Edgeworth box 

Any pair (p*,x*), where x*=(x1*,x2*), which satisfies: 

i=1,2 x'iBi(p*) [xi* ≥i x'i] 
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(D.3) Pareto optimum in an Edgeworth box 

An allocation x=(x1,x2) is Pareto optimal, if there is 

no other allocation x' in this box such that x'i ≥i xi for 

i=1,2 and x'i >i xi for some i. The set of all Pareto 

optima in an Edgeworth box is called the Pareto set. 

A part of the Pareto set including allocations 

preferred to the initial allocation (1,2) is called a 

contract curve. 
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Contract curve 
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Welfare economics theorems 

1. WE  PO 

2. PO  WE 

 

(T.2) The first welfare economics theorem in an 

Edgeworth box 

Any Walrasian equilibrium is a Pareto optimum 
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(D.4) In an Edgeworth box an allocation x* can be 

achieved as an equilibrium with transfers, if there is a 

price system p* and wealth transfers T1 and T2 

satisfying T1+T2=0 such that for every consumer i 

holds: xi* ≥i x'i for all x'i+
2 which satisfy 

p*Tx'ip*Ti+Ti 

 

(T.3) The second welfare economics theorem in an 

Edgeworth box 

If preferences are convex, then any Pareto optimum 

can be achieved as an equilibrium with transfers 
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Non-convex indifference curves (of A) 
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(D.5) Model of an economy with one consumer and one 

producer (The 'Robinson Crusoe Economy') 

There is one consumer, one producer (firm), and two 

goods: leisure x1 and a (material) consumption good 

x2. The consumer has continuous, convex, and strictly 

monotonic preferences ≥. He/she has an endowment 

L0 of leisure and a zero endowment of the 

consumption good. The firm uses labour in order to 

produce the consumption good according to a 

monotonically increasing and strictly concave 

production function f(z). The price of the 

consumption good is p, and the price of labour is w. 
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Both consumer and producer are price-takers. The firm 

maximizes its profit, Maxz0{pf(z)–wz}. As a result of 

the maximization problem, a (secondary) demand for 

labour is determined z(p,w), the supply of the 

consumption good q(p,w) and profit (p,w). The 

consumer maximizes the utility subject to a budget 

constraint given by selling labour and enjoying the profit 

of the firm he/she is the sole owner of: 

Maxx1,x20{u(x1,x2): px2w(L0–x1)+(p,w)}. The solution 

defines the consumer's (primary) demand 

x1(p,w),x2(p,w). The Walrasian (competitive) equilibrium 

is given by the system of two equations: 

x2(p*,w*)=q(p*,w*) and z(p*,w*)=L0–x1(p*,w*) 
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(T.4) In the 'Robinson Crusoe economy' (D.5) the 

competitive equilibrium is Pareto optimal 

 

Proof 

The theorem is an equivalence, i.e. it establishes the 

equivalence WE  PO. Consequently the proof will 

address two implications: (1)  and (2) . 
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Proof (cont.) 

(1) We will prove that if x2(p*,w*)=q(p*,w*) and z(p*,w*)=L0-

x1(p*,w*) then x1
*=x1(p*,w*) and x2

*= x2(p*,w*) are a 

Pareto optimum. In the model with one consumer the 

Pareto optimum means maximizing the welfare of this 

consumer (there are no other consumers). (x1
*,x2

*) 

maximizes the consumer's utility given the budget 

determined by two sources: selling labour and 100% 

share in the firms profit. Selling labour is utility-neutral 

since it subtracts from the value of leisure which – by 

definition – is valued by w. Thus if profit is maximized 

then also the budget is maximized. 
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(2) If (x1

*,x2
*) is a Pareto optimum then it will be proved that there 

exist prices p* and w* such that (x1
*,x2

*) are solutions to 

optimization problems of the consumer and the producer. Let us 

assume that (x1
*,x2

*) solves the problem Maxx1,x20{u(x1,x2): 

x2f(L0-x1)}, i.e. it is a Pareto optimum. As preferences are 

strictly monotonic, the constraint has to be satisfied as equality: 

x2
*=f(L0-x1

*). If f is differentiable at L0-x1
* then df(L0-x1

*)/dx1 

is the proportion –w*/p* we were looking for. Indeed, we will 

prove that, if faced with such prices, the producer maximizes 

the profit buying L0-x1
* of labour, and the consumer maximizes 

utility by selling L0-x1
* of labour. Let us check the producer 

first. The straight line going through (x2
*,f(L0-x1

*)) with the 

coefficient -w*/p* is the highest iso-profit curve. Thus the profit 

is highest there indeed. 
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Now the consumer. In the initial allocation (before the labour 

is sold to the producer) the consumer has L units of leisure 

and (p*,w*) units of money (as the only owner of the firm). 

The money lets buy (p*,w*)/p* units of the consumption 

good. But the straight line going through this point and with 

the coefficient -w*/p* is also going through the point (x1
*,x2

*) 

which completes the proof since this is where the consumer 

maximizes utility. 
 

If f is not differentiable in L0-x1
* then – being monotonic and 

strictly concave – it has both one-sided derivatives, and its 

left derivative is larger than the right derivative. The 

proportion of equilibrium prices -w*/p* is any number 

between the right and the left derivative. The rest of the proof 

is as in the differentiable case. 
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(D.6) 22 Production model 

The economy consists of firms # 1 and # 2 which 

produce consumption goods q1 and q2, respectively, 

using two primary factors z1=(z11,z21)T0, 

z2=(z21,z22)T0. Production of each firm is determined 

by a convex, strictly increasing differentiable 

production function fj(zj). The initial endowments of 

factors z0
1,z0

2>0 are owned by consumers who do not 

derive any utility from them (directly). 
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The consumption good prices p=(p1,p2)T are given 

exogenously, and factor prices w=(w1,w2)T are to be 

determined endogenously by the model (small open 

economy model). The firms determine production 

levels by solving the following profit maximizing 

problems: Maxzj0{pjfj(zj)–wTzj}. Their solutions 

determine the (secondary) demands zj(p,w)+
2. It is 

assumed that equilibrium in the factor market will be 

an internal one, i.e. w*=(w1
*,w2

*)T»0. It satisfies the 

following conditions: (z1j
*,z2j

*)zj(p,w) for j=1,2 and 

zl1
*+zl2

*=z0
l for l=1,2. 
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22 model example 

 

• Firm 1 – farm (food producer) 

• Firm 2 – hospital (medical care producer) 

 

• Input 1 – land 

• Input 2 – labour 
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(T.5) First order conditions (both necessary and sufficient) 

for the 22 production model are: 

 pj∂fj(zj
*)/∂zl j=wl

* for j=1,2, l =1,2 

 zl 1
*+zl 2

*=z0
l for l =1,2 

 

(T.6) First order conditions (both necessary and sufficient) 

for the 22 production model are: 

 pj=∂cj(w*,qj
*)/∂qj for j=1,2 

 ∂c1(w*,q1
*)/∂wl+∂c2(w*,q2

*)/∂wl=zl
0 for l =1,2, where 

c1,c2 – cost functions defined as in D.8 from lecture 3. 
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(T.7) First welfare economics theorem in the 22 

production model 

Equilibrium in factor market (D.6) solves the following 

optimization problem 

Maxz1,z20{p1f1(z1)+p2f2(z2): z11
*+z12

*=z0
1, z21

*+z22
*=z0

2} 
 

(D.7) 22 production model with constant scale effects 

It is assumed that functions f1 i f2 in D.6 economy are 

homogeneous of degree 1. Let cj(w)=cj(w,1) and let 

aj(w)=(a1j(w),a2j(w)) for j=1,2 be factor inputs such that 

these costs are minimized (it is assumed that they are 

unique). 
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(T.8) In the 22 production model with constant scale 

effects Dwcj(w)=aj(w) for j=1,2 

 

(D.8) Production of the good # 1 uses the factor # 1 

relatively more intensely than the production of the 

good # 2, if for all w, a11(w)/a21(w)>a12(w)/a22(w) 
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(T.9) The Stolper-Samuelson theorem 

In the 22 production model with constant scale 

effects let D.8 be satisfied. Then, if the price p1 

increases, the price of the factor # 1 (w1) increases 

too, and the price of factor # 2 (w2) decreases; it is 

assumed that both the original prices and the new 

prices imply internal solutions. 
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(T.10) The Rybczynski theorem 

In the 22 production model with constant scale 

effects let D.8 be satisfied. Then, if the endowment of 

the factor # 1 (z0
1) increases, the production of the 

good # 1 (q1) increases too, and the production of the 

good # 2 (q2) decreases; it is assumed that both the 

original prices and the new prices imply internal 

solutions. 
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(D.9) General equilibrium model 

➢ Consumers i=1,...,I have consumption sets 

XiL and rational (complete and transitive) 

preference relations ≥i defined over Xi. 

➢ Firms j=1,...,J have production sets YjL, and 

Yj are non-empty and closed. 

➢ Endowments of goods l =1,...,L are 

=(1,...,L)TL. 

➢ Consumers and firms are price-takers. 
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(D.10) A D.9 economy is called a pure exchange 

economy if all the production sets Yj=-+
L for 

j=1,...,J. 

 

(T.11) A pure exchange economy in Edgeworth box 

from D.1 is a pure exchange economy of D.10 for 

L=2, I=2, X1=X2=+
2, J=1, Y1=-+

2 
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(D.11) In a D.9 model an allocation (x,y) is feasible if 

xl1+...+xlI = l+yl1+...+ylJ for all l =1,...,L. The set of 

feasible allocations is 

A={(x,y)X1...XIY1...YJ: xl1+...+xlI = 

l+yl1+...+ylJ for all l =1,...,L}L(I+J) 

 

(D.12) A feasible allocation (x,y) is a Pareto optimum if 

there is no allocation (x',y')A, such that 

i=1,...,I [x'i ≥i xi] ˄ i=1,...,I [x'i >i xi] 
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(D.13) An economy with private ownership is any D.9 

model where every consumer i has initial 

endowments i=(1
i,...,L

i)TL and shares ij[0,1] 

in firms' profits for j=1,...J, with 1+...+I =  and 

1j+...+Ij = 1 for any j=1,...,J. 
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(D.14) Competitive (Walrasian) equilibrium in an 

economy with private ownership 

An allocation (x*,y*) and prices p=(p1,...,pL)T are 

competitive equilibrium if: 

i. for every j=1,...,J yj
* maximizes the profit in Yj, i.e. 

pTyjpTyj
* for all yjYj 

ii. for every i=1,...,I xi* is maximal with respect to ≥i 

in a respective budget set, i.e. in 

{xiXi: pTxi  pTi+i1pTy1
*+...+iJpTyJ

*} 

iii. x1*+...+xI* = +y1
*+...+yJ

* 
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(D.15) Price equilibrium in an economy with transfers 

An allocation (x*,y*) and prices p=(p1,...,pL)T are a 

price equilibrium in an economy with transfers, if 

there is a distribution of wealth w1,...,wI satisfying 

w1+...+wI = pT+p(y1
*+...+yJ

*) such that: 

i. for every j=1,...,J yj
* maximizes the profit in Yj, i.e. 

pTyjpTyj
* for every yjYj 

ii. for every i=1,...,I xi* is maximal with respect to ≥i 

in a respective budget set, i.e. in 

{xiXi: pTxi  wi} 

iii. x1*+...+xI* = +y1
*+...+yJ

* 
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(T.12) Any competitive equilibrium (D.14) is a price 

equilibrium in an economy with transfers (D.15) 

 

(T.13) The first fundamental welfare economics theorem 

If preferences are locally non-satiated and (x*,y*,p) is 

a price equilibrium in an economy with transfers then 

(x*,y*) is a Pareto-optimum allocation. In particular, 

any Walrasian equilibrium is a Pareto optimum. 
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(D.16) Quasi-equilibrium in an economy with transfers 

An allocation (x*,y*) and prices p=(p1,...,pL)T are a 

quasi-equilibrium in an economy with transfers if 

there is a distribution of wealth w1,...,wI satisfying 

w1+...+wI = pT+p(y1+...+yJ
*) such that: 

i. for every j=1,...,J yj
* maximizes profit in Yj, i.e. 

pTyjpTyj
* for every yjYj 

ii. for every i=1,...,I if xi i xi*, then pTxi  wi 

iii. x1*+...+xI* = +y1
*+...+yJ

* 
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(T.14) The condition (ii) in D.16 is weaker than the 

condition (ii) in D.15 

 

Statement "for every i=1,...,I if if xi i xi*, then pTxi  wi" 

is weaker than "for every i=1,...,I xi* is maximal with 

respect to ≥i in a respective budget set, i.e. in 

{xiXi: pTxi  wi}". 
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(T.15) The second fundamental welfare economics 

theorem 

Let all Yj be convex sets and let all ≥i be convex, 

locally non-satiated preferences. Then for every 

Pareto-optimal allocation (x*,y*) there exists a price 

system p=(p1,...,pL)T0, such that (x*,y*,p) is a quasi-

equilibrium with transfers. 
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(T.16) Let us assume that for every i=1,...,I Xi is a 

convex set with 0Xi, and ≥i is continuous. Then 

every quasi-equilibrium with transfers such that 

w1,...,wI>0 is also a price equilibrium with transfers. 

 

(T.17) In a pure exchange economy (D.10), if 

preferences are continuous, strictly convex and 

locally non-satiated, then p0 is a Walrasian 

equilibrium price system if and only if 

(x1(p,pT1)–1)+...+(xI(p,pTI)–I)0 
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(D.17) Excess demand in a pure exchange economy 

model 

Excess demand of the ith consumer is a function 

zi(p)=xi(p,pTi)–i. Aggregate excess demand 

function is z(p) = z1(p)+...+zI(p) 

 

(T.18) If for every consumer i=1,...,I, Xi=+
L, and 

preferences ≥i are continuous, strictly convex and 

strictly monotonic, then a price system p=(p1,...,pL)T 

is a Walrasian equilibrium price system if and only if 

z(p)=0 
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(T.19) By the assumptions of T.18, if 1+...+I » 0, then 

function z defined for all p»0 satisfies: 

(i) z is continuous 

(ii) z is homogeneous of degree 0 

(iii) pTz(p)=0 for all p (the 'Walras Law') 

(iv) s>0 l =1,...,L p [zl(p)>–s] 

(v) (limn→pn=p0 ˄ l =1,...,L [pl =0])  

Max{z1(pn),...,zL(pn)}→ 
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(D.17) Excess demand in an economy with production 

Let production sets be closed, strictly convex and 

bounded from above. Then an excess demand 

function z is defined for all p»0 by the following 

formula: 

z(p) = ixi(p,pTi+jijj(p))–ii–jyj(p) 

 

(T.20) By the assumptions of T.18, a price system 

p=(p1,...,pL)T is a Walrasian equilibrium price system 

in an economy with production if and only if z(p)=0 
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(T.21) By the assumptions of T.19, if the total 

endowment allows for producing a positive bundle of 

consumption goods, then excess demand function in 

an economy with production satisfies (i)–(v) from 

T.19 

 

(T.22) Let z(p) be a function satisfying T.21. Then the 

system of equations z(p)=0 has a solution 

 

(T.23) Let z(p) be a function satisfying (i)–(iii) from 

T.21. Then the system of inequalities z(p)0 has a 

solution 
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Non-technical summary 

 

A. Economic analysis of general equilibrium starts by 

abandoning an assumption that markets for specific 

goods are independent from one another. 

 

B. Studying links between markets for specific goods 

makes the analysis much more complicated and 

suggests to look for simplified cases such as a pure 

exchange between two consumers, a production with 

one firm and one consumer, a supply from two firms 

using two factors (so-called '22 model') etc. 



  

  

PhD-9-54 

 

C. General equilibrium analysis culminates in welfare 

economics theorems which determine the links 

between competitive (Walrasian) equilibrium and 

Pareto optimality. 

 

D. The first welfare economics theorem states that a 

market equilibrium can be attained only in a Pareto 

optimum. The second welfare economics theorem 

states that any Pareto optimum can be attained as a 

market equilibrium (perhaps with wealth transfers). 

The second theorem requires convexity assumptions 

for consumer preferences and production sets. 
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E. Assuming that preferences are continuous, strictly 

convex and locally non-satiated, the condition for 

market equilibrium is that excess demand is non-

positive. If furthermore local non-satiation is 

substituted with strict monotonicity, then the non-

positivity can be substituted with the condition that 

the excess demand is zero. 

 

F. Characterizing the market equilibrium with the 

system of equations or inequalities allows for 

carrying out existence proofs. 
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10. Public choice theory 
 

Condorcet paradox 
 

• 1/3 prefer C>S>K, 

• 1/3 prefer S>K>C, and 

• 1/3 prefer K>C>S. 

Thus 

• 2/3 prefer C>S, and 

• 2/3 prefer S>K. 
 

Consequently the majority is for C>S>K. 

But the same argument can be for S>K>C. 
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(D.1) Dichotomous choice model. Consumers i=1,...,I 

choose among two alternatives: x and y. If i=-1, then 

consumer i prefers y over x, if i=0, he or she is 

indifferent, and if i=1, then he/she prefers x over y. 

 

(D.2) Dichotomous social welfare functional 

(dichotomous social welfare aggregator) is a rule F 

which states a social preference for any system of 

individual preferences from D.1; i.e. 

F: {-1,0,1}I → {-1,0,1} 
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(D.3) Dichtomous social welfare functional is Paretian 

(has a Pareto property), if 

F(1,...,1)=1 and F(-1,...,-1)=-1 

 

(T.1) Dichotomous social welfare functional reflecting a 

majority voting F(1,...,I)=sign(1+...+I) is 

Paretian 

 

(D.4) Dichotomous social welfare functional is 

dictatorial, if there is a consumer h, called a dictator, 

who makes that h=-1 implies F(1,...,I)=-1 and 

h=1 implies F(1,...,I)=1 
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(T.2) Dichotomous dictatorial social welfare functional 

is Paretian 

 

(D.5) Dichotomous social welfare functional is 

symmetric (anonymous) if for any permutation  of 

the set {1,...,I}, F(1,...,I)=F((1),...,(I)) 

 

(D.6) Dichotomous social welfare functional is neutral 

between alternatives if 

F(1,...,I) = -F(-1,...,-I) 
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(D.7) Dichotomous social welfare function is positively 

responsive if (1,...,I)  ('1,...,'I), (1,...,I)  

('1,...,'I) and F(1',...,I')0 imply F(1,...,I)=1 

 

(T.3) May Theorem 

Dichotomous social welfare function F is a majority 

voting function if and only if three conditions hold: 

(i) F is symmetric, 

(ii) F is neutral between alternatives, and 

(iii) F is positively responsive 
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(D.8) General choice model. Consumers i=1,...,I have 

rational preferences ≥i over the same set X. Let R 

denote the set of all rational preference relations on X. 

Social welfare functional (social welfare aggregator) 

for R0RI is a function F: R0 → R defining a rational 

preference F(≥1,...,≥I) for any system of individual 

preferences in R0. Fp denotes a strict preference 

implied by F. 

 

(D.9) A social welfare functional is Paretian if for any pair 

of alternatives {x,y}X and any system of preferences 

(≥1,...,≥I)R0: (i=1,...,I [x>iy])  xFp(≥1,...,≥I)y 
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(D.10) A social welfare functional F: R0 → R is 

independent of irrelevant alternatives, if the social 

preference between two alternatives {x,y}X 

depends only on individual preferences with respect 

to these very alternatives, i.e.: 

{x,y}X (≥1,...,≥I)R0 (≥'1,...,≥'I)R0 

[(i=1,...,I [(x≥iy  x≥'iy)˄(y≥ix  y≥'ix)])  

(xF(≥1,...,≥I)y  xF(≥'1,...,≥'I)y) 

˄(yF(≥1,...,≥I)x  yF(≥'1,...,≥'I)x)] 
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(D.11) A social welfare functional F is dictatorial if 

there exists a consumer h, called a dictator, which 

makes that x>hy implies that for any system of 

preferences (≥1,...,≥I)R0: 

xFp(≥1,...,≥I)y 
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(T.4) Arrow Theorem 

Let X include at least 3 alternatives. Let R0=RI or 

R0=PI, where P is the set of all rational preferences 

on X such that only identical alternatives are 

indifferent. Then every Paretian social welfare 

functional independent of irrelevant alternatives is 

dictatorial. 
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(D.12) A relation L on a set X of alternatives is a linear 

order if it is complete and transitive (hence also 

reflexive – see T.1.1 from lecture 1). Moreover if 

xy, then xLy excludes yLx and vice versa. 
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(D.13) A rational preference relation ≥ is single peaked 

with respect to a linear order L on X if there is an 

alternative xX such that ≥ is increasing with respect 

to L on 

{yX: xLy} 

and decreasing on 

{yX: yLx} 

(i.e. x L y >L z  y>z and z >L y L x  z<y) 

 

(D.14) For a given linear order L on X, RR denotes 

the set of all rational preferences on X which are single 

peaked with respect to L 
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(D.15) A majority voting function for (R)I is defined as 

Fm: (R)I → R, such that for any x,yX we have: 

xFm(≥1,...,≥I)y 

 

card{i{1,...,I}: x>iy}card{i{1,...,I}: y>ix} 

 

(D.16) Consumer h{1,...,I} is called a median agent for 

the system of preferences (≥1,...,≥I)(R)I if 

card{i{1,...,I}: xixh}I/2 and 

card {i{1,...,I}: xhxi}I/2, 

where xi is the (only) alternative best preferred by i. 
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(T.5) For any system of preferences (≥1,...,≥I)(R)I there 

exists a median agent; moreover, if I is an odd number and 

every consumer has a different peak, then there is a unique 

median agent. 

 

(D.17) For a system of preferences (≥1,...,≥I)(R)I an 

alternative xX is called a Condorcet winner, if for every 

alternative yY: xFm(≥1,...,≥I)y 

 

(T.6) For any system of preferences (≥1,...,≥I)(R)I the 

alternative best preferred by a median agent xh satisfies for 

any alternative yX: xhFm(≥1,...,≥I)y (thus it is a Condorcet 

winner) 
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(T.7) Let I be an odd number and let L be a linear 

ordering on X. Moreover let PR denote the set of 

all preference relations that are single peaked and 

where an indifference holds between identical 

alternatives only. Then the majority voting procedure 

makes a relation Fm(≥1,...,≥I) that is complete and 

transitive. 
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Condorcet preferences 

 

 
    C>S>K   S>K>C     K>C>S 
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(D.18) Social choice function, any f: R0 → X defined 

over any R0 RI consistent with a social welfare 

functional 
 

(T.8) By the assumptions of T.7, let R0(P)I. Then any 

social choice function f(≥1,...,≥I) returns a Condorcet 

winner 
 

(D.19) A social choice function f: R0 → X defined on 

R0RI is weakly Paretian if for any system of 

preferences (≥1,...,≥I)R0 the choice f(≥1,...,≥I)X is 

a weak Pareto optimum, i.e. for some x,yX and for 

every i=1,...,I: x>iy implies yf(≥1,...,≥I) 
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(D.20) An alternative xX maintains its position from 

the system (≥1,...,≥I)RI to (≥'1,...,≥'I)RI 

if for every i=1,...,I and every yX: x≥iy  x≥'iy 

 

(D.21) A social choice function f: R0 → X defined on 

R0RI is monotonic if for any two systems 

(≥1,...,≥I)R0 and (≥'1,...,≥'I)R0 such that the 

alternative chosen x=f(≥1,...,≥I) maintains its position 

from (≥1,...,≥I) to (≥'1,...,≥'I) we have: x=f(≥'1,...,≥'I) 
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(D.22) Consumer h{1,...I} is called a dictator for a 

social choice function f: R0 → X, if for any system 

(≥1,...,≥I)R0, f(≥1,...,≥I)  {xX: yX [x≥hy]}. If 

there is a dictator for a given social choice function, it 

is called dictatorial. 

 

(T.9) Arrow theorem 

By the assumptions of T.4 every monotonic and 

weakly Paretian social choice function f: R0 → X is 

dictatorial 



  

  

PhD-10-19 

 

Non-technical summary 

 

A. Public choice theory studies whether individual 

preferences can be aggregated into social preferences 

in a way consistent with certain obvious principles 

such as e.g. satisfying the will of a majority. 

 

B. The Arrow theorem states that – in general – such an 

aggregation is not possible. 
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C. Aggregation consistent with certain obvious 

principles is possible in some special cases. For 

instance it is possible when there are only two 

alternatives to choose from, or when all the 

consumers have single peaked preferences. 

 

D. The Arrow theorem can also be stated for social 

choice functions. 


