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Abstract

In regression models not only the parameter estimates and significances of explanatory variables
are of interest, but also the degree to which variation in the dependent variable can be explained
by covariates. In recent publications an R*-measure based on deviance was recommended for Poisson
regression models, one of the most frequently used modelling tools in epidemiological studies. However,
when sample size is small relative to the number of covariates in the model, simple R*-measures may
be seriously inflated and may need to be adjusted according to the number of covariates in the model.
Two new adjustments for the R*-measure in Poisson regression models based on deviance residuals are
presented and compared by simulation with population values. The proposed measures are also applied
to real data sets. (©) 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

R?>-measures are frequently used in linear regressions and are also becoming more
familiar in generalized linear models. Although R*-measures are also called measures
of the proportion of ‘explained variation’, for generalized linear models the term
variation is not as clear as in linear regression, which is based on least-squares.
Generalized linear models are usually fitted by maximum likelihood methods and
many authors therefore prefer R>-measures based on the proportion of the reduction
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in maximized log-likelihood. All R*-measures try to give a measure with values
between zero and one, indicating no prognostic value of the covariates and perfect
prediction, respectively.

In recent years, several papers have dealt with R*-measures for Poisson regres-
sion models (e.g. Cameron and Windmeijer, 1996; Waldhor et al., 1998). The main
interest has been in the behaviour of R* without considering the number of fitted
parameters. Similar to regression models in clinical studies, Poisson regression mod-
els are often used to screen for prognostic factors in epidemiological studies which
have only small to moderate sample size and many covariates. In such situations un-
adjusted R?>-measures may give substantially inflated values, jeopardizing the ability
to draw valid interpretations. R?>-values of 30% or higher can easily be reached, even
when no association between independent and dependent variables exists at all.

In linear regression models the use of an adjusted R?-measure (Rﬁdj) is well es-
tablished and based on strong theoretical arguments, whereas in Poisson regression
models only ad hoc corrections have been proposed. To address this problem, we
suggest two new adjustments for an R?>-measure based on deviance residuals (R3gy ),
which was recommended by Cameron and Windmeijer (1996) and Waldhor et al.
(1998). We compare the behaviour of the new measures in a simulation study with
the unadjusted R?>-measure (R}, ) and an adjusted R*>-measure suggested by Waldhor
et al. (RZDEV’df). Finally, we present real-data examples and discuss the advantages
and disadvantages of the suggested measures.

2. Adjusted R> measures

Waldhor et al. (1998) reviewed four R?-measures for Poisson regression models of
the form log(u;) = Bx;, where y; is the expectation of a Poisson distributed variable,
x; is the vector of covariates for the ith observation and f is the parameter vector
to be estimated with f° as the intercept and f8',..., 8¢ as the parameters for the k
covariates. They described and compared their properties in detail and recommended
using the R?-measure based on deviance residuals, which can also be expressed in
terms of the log-likelihood:

g2 12 [Qilog(y)—y)—(yilog(a)— )] _ | log L(y)—log L({)

e > [(vilog(yi)—yi)—(yilog(y)—7)] log L(y)—log L(7)’
where y; is the observed value of the dependent variable, £, the predicted value of
the ith observation, y the mean of the dependent variable, log L(y) the log-likelihood
of the saturated model, log L(/1) the log-likelihood when all covariates are fitted and
log L(y) the log-likelihood when only the intercept is fitted.

The inflation of R*-measures can be considered when the number of covariates
is large relative to a given sample size. In linear models, R*-measures are therefore
adjusted by their degrees of freedom, so that the expectation of the adjusted R>
(based on sums-of-squares) equals zero for R = 0 in the underlying population:

k-1 S - )
(n—1D)7"3 (i — V)

Rjdj =1
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where n denotes the sample size and £ the number of estimated covariates without
intercept.
Waldhor et al. suggested using the same correction for degrees of freedom in the

Ry -measure as for the adjusted R*-measure (R;;) in linear regression models:

g (n—k=1)"logL(y) —log L(f)]
PEV.AI (n—1)""[logL(y) — log L(7)]

In a simulation study they demonstrated that this correction is adequate with B!, ..., f*
=0 and a large p. However, for rare events (i.e. small values of u) and small
sample size, Rjpy 4 gives values which are much too small. Similarly, the behaviour
of Rjpy ¢ has not been investigated in situations where f',..., f* # 0. Furthermore,
although this adjustment is appropriate in linear regression models when using the
sum-of-squares approach, it may only be approximately valid in Poisson regres-
sions using deviance residuals. We suggest two new correction terms based on the
log-likelihood function and investigate them in comparison to the unadjusted R,
and with Ry -

The likelihood-ratio statistic for testing all £ explanatory covariates in regression
models is 2[log L(i) — log L(7)] which follows approximately a y>~distribution with
k degrees of freedom under the null hypothesis Hy: ',..., ¥ = 0. The expectation
of the likelihood-ratio statistic under Hy is therefore & and the bias of log L(f1) is k/2
due to the estimation of the effect of £ non-informative covariates. Our first proposal
for a new correction of the R*-measure is

ey logl(y)—MogL(i)— k/2] _, logL(y)~logL(i)+ k2.

PEVadid log L(y) — log L(}) log L(y) — log L(})
Mittlbock and Schemper (1996) used a similar measure for logistic regression which
can also be applied to Poisson regression models. Namely, the likelihood-ratio statis-
tic 2[log L(fi) — log L(f°)], where B° is the true intercept parameter, follows ap-
proximately an y*~distribution with k 4+ 1 degrees of freedom under the null hy-
pothesis Hy: f',..., ¥ = 0. Therefore the bias of logL(fi) is (k + 1)/2. Similarly,
the bias of loglL(y) is % The second corrected R2-measure we propose is
therefore

Ry logL(y)— [log L(f) — (k +1)/2]
PEV.ad2 log L(y) — [log L(7) — 1/2]

_logL(y) —log L(j1) + (k + 1)/2
logL(y) —logL(y)+1/2

. 2 : 2
As can be easily seen Rppy .4, always gives values closer to zero than Rpgy g ;-

3. Simulations

The performance of the unadjusted and the three adjusted R*>-measures was com-
pared under various conditions for a Poisson regression model. Using the SAS
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procedure FACTEX (SAS, 1996), a factorial design was produced for sample sizes
of 16, 32, 64 and 16384 [=2'*] with 1, 3 and 5 completely balanced dichotomous
covariates with values 0 and 1. For simulations with five covariates and a sample size
of 16 only a fractional factorial design was produced as there were too few obser-
vations for a factorial design with five covariates. With the SAS function RANPOI,
Poisson distributed random variables were generated with mean o x exp[f'x;] with
o = exp(f®) = 1,2,5,30, respectively, and p' varying from 0 to 3. B! was chosen
so that a wide range of R* was covered for all py. Only the first covariate x; was
assumed to influence u. The prognostic effect of all other covariates was eliminated
by setting f2,..., B* = 0. The SAS procedure GENMOD was used to fit a Poisson
regression to the data and a SAS macro was written to do all subsequent calcula-
tions. The number of repetitions was 50000 for the smaller sample sizes of 16, 32
and 64 and 1000 for the large sample size of 16384.

The mean of R, for the 1000 repetitions with the large sample size (Rfarge) was
taken to be the true value because the estimations of the unadjusted and the adjusted
R%-measures are of essentially the same value and the sample size is large enough
that the number of investigated covariates (up to five covariates) has no influence
on the resulting values.

The mean estimated R?-values with varying mean (u), number of covariates (k),
sample size (n) and underlying R*> (depending on f') are listed in Tables la—lc.
For the sake of brevity, the results for uy =5 are discussed but not shown in the
tables. We see that under Hy: fB',..., ¢ =0, the unadjusted R}, -values increases
dramatically with increasing number of covariates and with decreasing sample size.
An increasing value of y, also results in slightly increased R, estimations. With
k=35, n=16 and yy = 1, the unadjusted R}, -measure reaches nearly 30% where
no dependence between u and the covariates exists at all. This figure even rises to
about 33% when u, increases to a value of 30.

We also see that while the three adjusted measures, Ripy 4> Rbgy a1 1A Ry o 25
correct this bias for the most part, they overcorrect in some situations so that the
estimated mean of R? is lower than the large sample R*. But this “small” bias seems
to be negligible compared to the bias of the unadjusted measure. Therefore, all three
adjusted measures represent an improvement over the unadjusted measure. However,
because they generate values which are not always in agreement, the question remains
as to which measure behaves the best when compared to the large sample estimate.

Rigy.ag.2 always gives values closer to zero than Rppy .41, SO it corrects more for
positive R*-values and fairly consistently it gives smaller values than the large-sample
study. Therefore Ry 4., is almost always preferable to Ry 45> €Xcept when R*=0,
in which case not much attention is given to R*>-measures at all. Ry .4, and Ryey g
also tend to provide smaller values than the large-sample study except for substantial
B' and o (B' > 1 and po > 5).

For all R}, > 65%, both Ripy 4, and Rpgy 4 give values very close to the large
sample results. The maximum difference is less than 1%, compared to a maximum
difference of about 11% for the unadjusted measure.

For B',..., =0, all estimated values are negative, indicating that the corrections
for the R*-measure are too strong. Rlz)EV,adj,z is closest to the true value of zero for
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to =1 and 2, but for larger uy, Rpgy 4 is closest to zero. In the simulations we
also allowed negative results, so that the estimated means would not be biased, but

in practice one would choose max(0, R
reality and would be equivalent to having no explained variation at all.

2
adj

). A negative R*-value makes no sense in

When the Poisson regression model approaches the linear regression (with large
o), R3py o behaves best, whereas in Poisson regression situations with rare events

2 : 5 2
Rpgy.aq1 Provides lower bias than Rppy g

Table 1a
Simulation results with po =1
Ho B : R%drge k n RZDEV RZDEV,df RzDEV,adj, 1 RzDEV,adj,Z
1 0.0 0.0 1 16 5.9 —0.8 —-0.3 —-0.3
32 2.8 —04 —0.1 —0.1
64 1.4 —-0.2 0.0 0.0
3 16 17.6 —-3.1 —1.1 —-0.9
32 8.4 —14 —-0.3 —-0.3
64 4.1 -0.7 —0.1 —0.1
5 16 294 —-59 —-1.7 —14
32 14.1 -2.5 —0.5 —04
64 6.9 —1.1 —0.1 —0.1
1 0.5 6.5 1 16 11.7 5.4 5.8 5.6
32 9.0 6.0 6.3 6.1
64 7.7 6.2 6.4 6.3
3 16 22.6 32 49 48
32 14.3 5.1 6.1 5.9
64 10.3 5.8 6.3 6.3
5 16 33.6 0.3 4.1 4.1
32 19.5 4.0 5.9 5.7
64 12.9 5.4 6.3 6.2
1 1.0 26.8 1 16 30.8 25.8 26.1 25.0
32 28.7 26.3 26.5 26.0
64 27.7 26.6 26.7 26.4
3 16 394 24.3 254 24.4
32 329 25.7 26.4 25.8
64 29.8 26.3 26.6 26.4
5 16 48.2 22.3 24.8 23.9
32 37.1 25.0 26.2 25.7
64 31.8 26.0 26.6 26.3
1 2.0 71.5 1 16 73.9 72.0 72.1 70.9
32 72.7 71.8 71.9 71.3
64 72.1 71.7 71.7 71.4
3 16 77.3 71.6 72.0 70.8
32 74.3 71.6 71.8 71.2
64 72.9 71.6 71.7 71.4
5 16 80.6 71.0 71.9 70.6
32 76.0 714 71.8 71.2
64 73.8 71.5 71.7 71.4
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Table 1b
Simulation results with py =2
Ho B ! Rlzarge k n RIZ.)EV RZDEV,df RZDEV, adj, 1 RzDEV,adj,z
2 0.0 0.0 1 16 5.9 —0.8 —0.7 —0.6
32 2.9 —-04 —0.1 —0.1
64 14 —-0.2 —0.1 —0.1
3 16 17.7 —-2.8 -22 —1.8
32 8.5 —-1.3 —-0.5 —04
64 4.2 —0.6 —0.1 —0.1
5 16 29.7 —5.5 —-35 -3.0
32 14.2 23 —0.8 —-0.7
64 7.0 —1.1 —-0.2 —0.2
2 0.4 8.0 1 16 13.3 7.1 7.1 6.8
32 10.6 7.6 7.7 7.5
64 9.3 7.8 8.0 7.9
3 16 24.4 5.5 5.8 5.6
32 15.9 6.9 7.5 7.3
64 11.9 7.5 7.9 7.8
5 16 35.5 33 4.4 4.5
32 21.3 6.1 7.2 7.0
64 14.5 7.2 7.8 7.7
2 0.8 30.3 1 16 343 29.6 29.6 28.4
32 322 30.0 30.1 29.5
64 31.3 30.2 30.3 30.0
3 16 42.8 28.5 28.8 27.7
32 36.3 29.5 29.9 29.3
64 333 30.0 30.2 29.9
5 16 514 27.1 28.1 27.0
32 40.5 29.0 29.8 29.2
64 353 29.8 30.2 29.9
2 1.5 67.8 1 16 70.4 68.3 68.4 67.0
32 69.1 68.1 68.1 67.4
64 68.5 67.9 68.0 67.6
3 16 74.3 67.9 68.1 66.7
32 71.0 67.8 68.0 67.3
64 69.4 67.8 67.9 67.6
5 16 78.1 67.2 67.8 66.5
32 72.8 67.6 67.9 67.2
64 70.3 67.7 67.9 67.6

4. Examples

The following two examples are typical for epidemiological studies, where we
have usually given the number of events (y;), e.g. death, and person-years lived
for each pattern of covariates. The number of events is then modelled by Poisson
regression depending on the covariates and the offset, which is usually the logarithm
of the person-years lived. A sequence of models is calculated for each example,
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Table 1c
Simulation results with po = 30
Ho B ! Rlzarge k n RZDEV RZDEV, df RzDEV.adj, 1 RzDEV,adj,Z
30 0.0 0.0 1 16 6.6 0.0 -1.0 —-0.9
32 32 0.0 —-0.2 —-0.2
64 1.6 0.0 —0.1 —0.1
3 16 19.9 —0.1 -3.1 —-2.6
32 9.6 —0.1 -0.7 —-0.6
64 4.7 —0.1 —-0.2 —-0.2
5 16 33.3 —0.1 -5.0 —43
32 16.0 —0.1 —1.1 —1.1
64 7.9 —0.1 -0.3 -0.3
30 0.1 7.2 1 16 13.2 7.0 6.1 5.8
32 10.1 7.1 6.9 6.7
64 8.7 7.2 7.1 7.0
3 16 25.5 6.9 4.4 4.4
32 16.0 7.0 6.5 6.3
64 11.6 7.2 7.0 6.9
5 16 37.8 6.8 2.6 2.9
32 22.0 7.0 6.1 6.0
64 14.5 7.1 6.9 6.8
30 0.2 24.0 1 16 28.5 23.4 229 21.8
32 26.2 23.7 23.6 23.0
64 25.1 23.9 23.9 23.6
3 16 38.7 23.4 21.7 20.7
32 31.0 23.7 23.3 22.7
64 27.5 23.9 23.8 23.5
5 16 48.8 23.3 20.4 19.7
32 359 23.6 23.0 22.5
64 29.9 23.8 23.7 23.4
30 0.5 70.4 1 16 72.9 71.0 70.9 69.5
32 71.7 70.7 70.7 70.1
64 71.1 70.6 70.6 70.3
3 16 76.8 71.0 70.8 69.4
32 73.6 70.7 70.7 70.0
64 72.0 70.6 70.6 70.3
5 16 80.6 70.9 70.6 69.2
32 75.4 70.7 70.6 70.0
64 72.9 70.6 70.6 70.2

beginning with a simple model with one covariate and continuing through a more
complex model, fitting one additional effect on each step (type I). As the model fit of
a Poisson regression depends on the covariates in the model, at least the last model
of our examples shows an acceptable model fit without over- or underdispersion.
Also non-significant covariates are left in the model to illustrate different situations.
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Table 2a
Results of Poisson regression of Example 1 (suicides among academics in Denmark)

Source p s.e. df Chi-square p-value
(a) Intercept —17.55 0.156 1

Sex —0.25 0.176 1 1.99 0.1583
(b) Intercept —7.89 0.227 1

Sex —0.26 0.176 1 2.10 0.1472

Age 0.07 0.032 1 4.73 0.0297
(c) Intercept —8.88 0.444 1

Sex - 027 0.176 1 2.20 0.1379

Age 0.53 0.174 1 10.10 0.0015

Age-squared —0.04 0.016 1 7.85 0.0051

Table 2b
Estimated R’-measures in percent of Example 1 (suicides among academics in Denmark)
Rbey Rbev.ar Rbey.adi1 Rbev adi 2
(a) Sex 7.4 1.7 3.5 3.4
(b) Sex + age 25.9 16.1 18.1 17.4
(c) Sex + age + age-squared 56.7 47.5 45.0 433

4.1. Suicides among academics in Denmark 19701980

Based on data from the Danish census of 9th November 1970 and official mortality
statistics for the preceding 10 years, the mortality of the total Danish labour force
aged 20—64 years was studied. Anderson et al. (1993, pp. 17, 18) give the number
of suicides (;), a total of 193 death, and the number of person-years lived, at total
447.358 years, for academics specified by sex and age. Age is separated into nine age
groups with an interval length of 5 years. Thus we have 18 observations (covariate
patterns), nine age-groups for males and females. In our model for this data set we
fit three covariates: sex, age and age-squared. There is no interaction between sex
and age.

In Table 2a the results of the Poisson regressions are given, modelling (a) sex,
(b) sex and age and (c) sex, age and age-squared, respectively. In Table 2b the
corresponding estimated R? values are given. In model (a) sex has no significant
influence. The values of Rppy .4, and Ry .4, are about 3.5%, approximately half
the value of Rigy. Rppy ¢ is only one fourth of R,,. When added to the model, both
age and age-squared prove to be significant factors. Suicide increases with increasing
age until 45-49 years and decreases afterwards. Table 2b shows that age-squared
contributes most to the reduction of unexplained variation, measured by means of
deviance. This could not be foreseen from parameter estimates or corresponding
p-values alone. About 45% of the uncertainty can be explained by sex, age and
age-squared.
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Table 3a
Results of Poisson regression of Example 2 (death from coronary artery disease among doctors)

Source p s.c. df Chi-square p-value
(a) Intercept —5.42 0.040 1

Smoke —0.54 0.107 1 25.59 0.0001
(b) Intercept —10.22 0.191 1

Smoke —0.41 0.107 1 14.37 0.0002

Age 0.08 0.003 1 828.12 0.0001
(c) Intercept —17.51 1.06 1

Smoke —0.35 0.11 1 10.90 0.0010

Age 0.33 0.03 1 90.60 0.0001

Age-squared —0.002 0.0003 1 51.25 0.0001

Table 3b

Estimated R?-measures in percent of Example 2 (death from coronary artery disease among doctors)
Ry RZDEV,df Rlz)w adj, 1 RZDEV,adj.Z

(a) Smoke 3.1 -9.0 3.0 3.0

(b) Smoke + age 92.6 90.5 92.4 92.3

(¢) Smoke + age + age-squared 98.7 98.0 98.4 98.3

4.2. Death from coronary artery disease among doctors

In 1961 Doll and Hill (1966) sent a questionaire to all male doctors on the British
Medical Register enquiring about their smoking habits. Almost 70% of the doctors
replied. Death certificates were obtained for medical practitioners and causes of death
were assigned on the basis of these certificates. The data set of Breslow (1985)
contains 10 observations (five age-groups and smoking status) with the corresponding
person-years lived (a total of 181.467 years) and the number of deaths from coronary
artery disease (a total of 731 deaths) accumulated during the first 10 years of study.
In Table 3a the results of modelling the number of deaths from coronary artery
disease (y;) are given with the covariates (a) smoking, (b) smoking and age and
(c) smoking, age and age-squared. We see that smoking and increasing age have a
significant influence on death from coronary artery disease, but the increase in risk
is bigger for younger people than for older people (quadratic age-effect).

In the first row of Table 3b we see the estimated R>-values for fitting smoking
only. Ripy, Rbpy agi1 and Ripy .40 give very similar values of around 3%, which is
not unusual as we fitted only one covariate and the model-y* is highly significant,
but Ry 4 becomes negative, which is not plausible as the effect of smoke is small
but significant. In general, if the model fit is significant, a suitable measure for Rﬁdj
should be greater than zero. From the second row we see that age is a very important
factor. The estimated R* increases from 3% to more than 90%. From the third row
we see that the quadratic term of age increases Rppy, Rbpy ag.1 and Rppy g, by about



470 M. Mittlbéck, T. Waldhér | Computational Statistics & Data Analysis 34 (2000) 461472

6%. One has to be aware that we are explaining in this example the proportion of
death, as it is the nature of a Poisson model, but we do not predict the event “death
of a single individual”. Therefore, it is not unusual to achieve an R*-value of about
98% with 10 different covariate pattern and three fitted covariates.

5. Discussion

In linear regression models one should always use an adjusted R*>-measure. Other-
wise the R?-value increases monotonically as the number of covariates increases,
even if they have no prognostic value at all. This rather undesirable property of R*
can result in artificially high values and may discourage investigators from searching
for further prognostic factors. Cameron and Windmeijer (1996) put forward major
arguments for the use of Rj., as a measure for explained variation and Waldhor
et al. (1998) compared several candidates for an R>-measure for Poisson regression.
Whatever intrinsic qualities each measure might have, it is clear that the difference
between the different measures is generally smaller than the difference between ad-
justed and unadjusted R>-measures.

Waldhor et al. suggested the use of the same correction for R%., in Poisson re-
gression models as for the R>-measure based on sums-of-squares in linear regression
models. This correction is based on the number of fitted degrees of freedom under
the full model with covariates and under the null model, when only the intercept
is fitted. This correction works well for larger u, when the Poisson regression is
approximated by linear regression. Cameron and Windmeijer (1996) stated that the
concepts of deviance, maximum likelihood estimation and Kullback—Leibler distance
are similar in function to the concept of residual sum of squares and least-squares
estimation in linear models. Therefore, it is obvious that the same correction makes
sense for R*-measures based on sums-of-squares and for R*-measures based on de-
viance residuals. However, in Poisson regression situations with rare events, where
the normal approximation is not appropriate, this correction can underestimate the
true values substantially and an adjustment based on the expected optimism of the
log-likelihood under the null-hypothesis seems to be more appropriate. Such a cor-
rection based on the likelihood is also in accordance with the basic character of
Ry

Usually, the range of an adjusted measure of explained variation also includes
negative values, as the correction is always based on expected values under the
null hypothesis in which covariates exert no effect. But negative values for Rﬁdj are
not a problem, as in these situations the whole model is not significant and one
is not interested in reporting and interpreting the proportion of explained variation.
Normally Ry is then assumed to be zero. But if the model fit is significant, a measure
of R;; should be positive. Also, if a significant factor is added to a model, then
R:; should increase. Neither are true for Rppy 4, as shown in the second example,
whereas they are always true for RzDEV,adj,l and RzDEV,adj,Z' For each degree of freedom
due to the addition of covariates in the fitted model, a value of % is subtracted from
log L(t). Thus, Ry .41 and Rigy .4, are only negative if the & covariates increase
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log L(fi) with less than k/2. But the model-y? is only significant if the log-likelihood
is increased by more than k/2. The same is true for adding covariates to a model.
The correction term for log L(fi) is - higher for each added degree of freedom, but

7

log L(fi) has to increase more than 5 for each added degree of freedom in order to
be significant. If a covariate with one degree of freedom is added with a p-value of
0.3173, which corresponds with an y7 test statistic of 1 (this is twice the increase in
log L(f1)), then Ripy .4, and Rypy 5, remain unchanged. For p < 0.3173, Ripy .41
and Rppy .4, increase and if p > 0.3173, Ripy g and Rppy ., decrease.

The concepts of explained variation and of significant p-values are different. It is
not possible nor desirable to draw conclusions from the magnitude of R*-values to the
significance of the model nor to the significance of single covariates. For instance,
in Example 2 Rigy, Rbey.g, and Rbgy g, are all around 3%. There is nearly no
correction because the model-y? is highly significant. Despite the relatively small
p-value, the proportion of variation explained by smoking is very small, only 3%.
In Example 1 Rig, is about 7.4% and the model-y* is not significant. Therefore,
the correction is rather strong and RZDEV’adj,1 and RIZDEV,adj,Z are around 3.5%, about
half the value of Rppy,Rbgy g1 and Rpgy ., are even slightly higher than in the
significant model in Example 2.

In summary, Ry 4., behaves best in typical situations where a Poisson regression
is based on a small sample and/or many covariates. Although its estimated value is
too low in situations with no or nearly no explained variation, in such cases the
model test would also not be significant. One would therefore not pay attention to
the model, nor the R*-measure. Furthermore, in small samples the likelihood ratio
may not follow an y>-distribution, so the correction term is also not completely
adequate even though the correction seems to fit well enough. Only when u is large
and the Poisson distribution is approximated by the normal distribution, Rjgy 4 does
give a better estimation of the underlying R*-value.

All the measures presented here are easy to calculate, as most packages for Poisson
regressions provide the log-likelihood of the fitted model. With most packages one
can also fit Poisson models with intercept only. All corrections depend only on the
number of fitted covariates. With these three values, Ripy 4.1 and Rppy .4, can easily
be calculated. To calculate Ry 4, the sample size also is needed.

A major problem in Poisson regression may be overdispersion, when the dispersion
of the data is greater than that predicted by the Poisson model, i.e. var(Y)>E(Y),
which is most likely if the Pearson and deviance goodness-of-fit statistics indicate
poor fit. So an apparent overdispersion could reflect missing covariates or it may be
produced by a clustered Poisson process. If the precise mechanism that produces the
overdispersion is known, specific methods may be used, ¢.g. a random effects model
which are frequently based on the negative binomial likelihood. In the absence of
such knowledge McCullagh and Nelder (1989) suggest to assume as an approxima-
tion that var(Y) = ¢u for some constant ¢. The estimate of ¢ (which is also called
dispersion parameter in generalized linear models) is usually the Pearson or deviance
statistic divided by its degrees of freedom. With overdispersion present, the use of
the Poisson maximum likelihood equations for estimating the regression parame-
ters in the mean is still valid, however the variance structure may be misspecified.
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Therefore, the predicted values and the deviance remain the same under overdisper-
sion and R?-measures are not changed. However, the adjustments of RZDEV’adL1 and
RBgy.agi.2» Which are based on log-likelihood theory assuming no overdispersion, may
be too small. To find correct R*-adjustments when overdispersion is handled with
the simple method of McCullagh and Nelder is still a research area. If models based
on negative binomial likelihood are used to deal with overdispersion a completely
different model is fitted and R*-measures as discussed in this paper may not be
suitable.

In conclusion, we recommend routine evaluation of the adjusted proportion of
explained variation in Poisson regression models. In any of these applications inves-
tigators may easily be misled by highly significant p-values or impressive parameter
estimates for explanatory factors, while outcomes are far from being determined.
R?-measures offer a different and more accurate view. If investigators evaluate the
effect of innumerable covariates, the unadjusted R*-measure will increase with the
number of covariates. Therefore, one should always use an adjusted R>-measure
which considers the number of evaluated covariates and gives a realistic view about
the proportion of variation explained by covariates in the model.
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