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ABSTRACT  

So far bundling literature has mainly focused on conditions for marginal profit dominance. However this classical 

perspective has little practical applicability, as it does not tell under which conditions pure or mixed bundling can 

be expected to strictly outperform separate sales of goods and by how much. Therefore in this paper we shift to a 

different perspective and look at the magnitude of profit gains from bundling. We propose specific demand setting 

governed by a single parameter joint density function of reservation prices for two goods which has two convenient 

properties: (i) marginal distributions are uniform yielding linear market demands for each of bundle components 

and (ii) correlation coefficient between reservation prices has a closed-form. Our analysis, carried out for the whole 

possible range of marginal costs and degree of correlated valuations for bundle components, shows that in most 

cases bundling brings only small gain or no improvement. Profit gains magnitude exceeds 10% only for low 

marginal cost and sufficient negative correlation of valuations. Hence, our results conform with practical 

observations that bundling is applicable mainly to low marginal costs industries like information goods or ICT 

services. 

HIGHLIGHTS  

 We introduce bivariate density function with linear component demands and closed-form correlation. 

 We analyze profit gains from bundling for any degree of correlation and marginal cost.  

 Combination of strong negative correlation of reservation prices and low marginal costs is critical for the 

magnitude of profit gains. 
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INTRODUCTION  

The question about conditions for optimality of bundling is a long studied issue in 

literature. The problem has been posted since the seminal works of Stigler (1963) and Adams 

and Yellen (1976) and still has not received a definite answer. In their famous study, Adams 

and Yellen have shown on discrete examples that monopolist will earn extra profit from 

bundling, compared to independent sales of products, if a distribution of reservation prices for 

the package has reduced variance compared to valuations of each component. Their second 

conclusion  was that whether bundling is more profitable depends crucially on the level of unit 

costs.1 

Since then numerous attempts has been made to derive conditions under which bundling 

generates more profit for possibly the least restrictive assumptions about consumer demand 

space and costs. Venkatesh and Mahajan (2009) provide an excellent overview of those efforts 

undertaken throughout more than three decades. They conclude that although mixed bundling 

is generally expected to weakly outperform pure components, the conditions for strict profit 

dominance are known only for special cases. Existing research identified at least several 

demand and supply side elements which determine profitability of bundling, such as: (non) 

additivity and correlation in reservation prices and (non) additivity of unit costs. Scope 

economics and demand complementarity, if present,  are both additional  rationale for bundling. 

Bundling works through reduced heterogeneity in reservation prices across consumers, thus 

facilitating the capture of greater part of consumer surplus (Schmalensee 1984). On the other 

hand mixed bundling is essentially a price discriminating tool and might yield even higher profit 

if marginal production costs are substantial.2 The idea of reduced heterogeneity of reservation 

prices for a bundle is linked to the issue of negative correlation of component reservation prices. 

McAfee, McMillan et al. (1989) establish general sufficient condition for mixed bundling to 

dominate separate sales for any atomless joint distribution of reservation prices and show that 

it holds also for independently distributed reservation prices. Their condition partially 

corresponds to, but does not imply, a negative correlation property of reservation prices. More 

recently, Chen and Riordan (2013) utilized copula approach to restate sufficient and necessary 

conditions of McAfee, McMillan et al. (1989) for bundles of size larger than two. Their 

                                                 

1 Adams and Yellen considered two forms of bundling. Under pure bundling, monopolist sells only the package, while under 

mixed bundling consumers may choose to buy either a package (for the price that is different from the sum of single-good 

prices) or any of the component goods separately. This distinction is an established standard in literature until now. 
2 Mixed bundling enables monopolist to sell a bundle to a large mass of customers with at least moderate valuations for both 

goods and at the same time capture higher mark-up from consumers, who are mainly interested in one of the goods. 
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conditions use broader concepts of negative dependence or tail dependence which are properties 

of copula functions (Nelsen 1999). However bundling can be profitable also when reservation 

prices for two products are positively correlated, at least for specific distributions of individual 

demands such as bivariate normal (Schmalensee 1984).  

All these studies have adopted local analysis approach, looking at improvement of profits when 

shifting to mixed bundling, from introducing package price with infinitesimal small discount. 

Our study takes different approach. We focus on by how much (mixed) bundling outperforms 

unbundling. It requires switching from local improvement analysis towards searching for global 

optima. Despite its obvious practical relevance, the problem of (global) profit gains magnitude 

has not received much attention in literature so far. Some existing studies conducted global 

optima analysis for specified stylizations of components reservation prices and dependency 

pattern, sometimes with supportive use of simulation techniques.3 Eckalbar (2010) explores 

optimality of bundling under uniform distribution of reservation prices and gives analytical 

mixed and pure bundling solutions, but only for the three special cases: independence and 

perfect positive or negative correlation.4 He also reflects on the profit gains issue and claims 

that mixed bundling offers up to 10% larger profits then separate sales while the gains from 

pure bundling do not exceed 8.8% - both results holding only for independence case and zero 

marginal costs. Despite this result, hardly anything can be found about how the magnitude of 

profit  gains from bundling is affected by costs and correlation of valuations.  

This paper aims to shed some light on this issue. To progress with analysis of profit gains, we 

introduce a new bivariate distribution of reservation prices which possesses advantages of both 

previously indicated. On one hand it has analytically tractable demand and profit functions for 

pure bundling and pure components strategies and on the other hand it allows to capture 

underlying correlation with a single parameter.  

Our contribution to existing research is twofold. First, we propose joint density function of 

reservation prices for two goods 𝑓𝑎, with a single parameter controlling for the shape of demand 

space. We show that this joint distribution has two convenient properties for the analysis of 

                                                 

3 For continuous case, the most frequently used families of distributions are uniform and normal. Gaussian demand is 

analytically intractable, but on the other hand, bivariate normal distribution captures underlying correlation through a single 

parameter. 
4 Uniform distribution yields linear demand curve which makes this distribution convenient for analytical profit maximization, 

especially for pure components strategy, but so far there have been no attempts to analytically model partial correlation between 

uniformly distributed valuations, perhaps in consent with a view expressed by Venkatesh and Mahajan (2009, p.236): “This 

form is analytically quite tractable, can capture complementarity and substitutability, but is not convenient for modeling 

correlation (except perfect positive/negative correlation)”. 
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bundling problem: (i) marginal distributions derived from 𝑓𝑎 are always uniform in the whole 

parameter space and (ii) correlation coefficient between marginal distributions is a closed-form 

function of distribution’s parameter and can take any value in the whole range [-1,+1]. Under 

our formulation of reservation price space, we are able to analytically model pure bundling 

problem for any degree of correlation. Although closed-form solutions for mixed-bundling do 

exist in proposed setting, our treatment of mixed bundling relies on simulations, as this case 

has too many subcases that need to be considered analytically. Second, for the introduced joint 

density function we analyze optimality and profit gains from shifting to monopoly pure and 

mixed bundling strategies for a full range of correlation and marginal costs. Our results are 

valid for the specific type of distribution we have adopted, but nevertheless they support an 

astonishing conclusion that while bundling is never worse than unbundling, it is rarely better 

enough for practical implementation. This conclusion holds even for strong negative correlation 

between reservation prices, pointing to the critical role of costs in bundling analysis. We assess 

bundling gains with arbitrary assumption that 10% markup over operating surplus from pure 

components is sufficient to cover implementation costs.5 The fact that mixed bundling rarely 

exceeds this rather modest threshold is the most astonishing finding from our study.  

The paper is organized as follows. In section 2 we describe the general structure of bundling 

problem and set out our analytical framework. More specifically we introduce bivariate density 

function with ‘belt-shaped’ domain to describe reservation price space and derive formula for 

correlation of reservation prices. In section 3 we provide solutions to bundling problem within 

our framework and  determine profit gains from pure and mixed bundling for different degrees 

of correlation and marginal costs. The last section provides summary and conclusions.  

MODEL OF COMMODITY BUNDLING  

The focus of this section is on mathematical model of commodity bundling. Let ℝ denote 

the ordinary real line (−∞,∞), ℝ2 denote the real plane ℝ × ℝ, and ℝ denote the extended real 

line [−∞,∞], ℝ
2
denote the extended real plane ℝ× ℝ. We also let 𝐷𝑜𝑚𝑓 and 𝑅𝑎𝑛𝑓 denote 

the domain and the range of the 𝑓 function. There are two goods in our model. We will use the 

capital letters 𝕏 and 𝕐 to represent these goods and lowercase letters 𝑥, 𝑦 to represent their 

reservation prices. Valuations of  𝕏 and 𝕐 goods by consumers will be represented in our 

model by joint bivariate reservation price density function. 

                                                 

5 In reality there are always some additional fixed and variable implementation costs, which are usually ignored in bundling 

models as a consequence of simplifying assumptions about additivity of constant marginal costs. 
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Definition 1 

The bivariate reservation price density function for goods 𝕏 and 𝕐 is a real function 𝑓 with the 

following properties: 

1. 𝐷𝑜𝑚𝑓 = [0, 𝑥] × [0, 𝑦] ⊂ ℝ
2
is the Cartesian product of two closed intervals, where 

𝑥 ∈ ℝ, 𝑦 ∈ ℝ and 𝑥 ≥ 𝑦 > 0, 

2. 𝑅𝑎𝑛𝑓 ⊂ ℝ and 𝑓(𝑥, 𝑦) ≥ 0 for all (𝑥, 𝑦) in [0, 𝑥] × [0, 𝑦], 

3. ∬ 𝑓(𝑥, 𝑦)𝑑𝑦𝑑𝑥
 

[0,𝑥]×[0,𝑦]
= 1. 

 

Note that for all 𝑥1, 𝑥2 ∈ [0, 𝑥], 𝑥1 ≤ 𝑥2 and for all 𝑦1, 𝑦2 ∈ [0, 𝑦], 𝑦1 ≤ 𝑦2 in 𝐷𝑜𝑚𝑓 

0 ≤ ∫ 𝑑𝑥 ∫ 𝑓(𝑥, 𝑦)𝑑𝑦 ≤ 1

𝑦2

𝑦1

𝑥2

𝑥1

 

is the fraction of a population of consumers with the reservation prices for good 𝕏 and 𝕐 

falling within rectangle [𝑥1, 𝑥2] × [𝑦1, 𝑦2] 

Definition 2 

The univariate reservation price density function for good 𝕏  is a real function 𝑓𝑥   with the 

following properties: 

1. 𝐷𝑜𝑚𝑓𝑥 = [0, 𝑥] ⊂ ℝ is the closed interval in ℝ, 

2. 𝑅𝑎𝑛𝑓𝑥 ⊂ ℝ and 𝑓𝑥(𝑥) ≥ 0 for all 𝑥 in [0, 𝑥], 

3. ∫ 𝑓𝑥(𝑥)𝑑𝑥
𝑥

0
= 1. 

Note that 

𝑓𝑥(𝑥) = ∫𝑓(𝑥, 𝑦)𝑑𝑦

𝑦

0

 

 and for all 𝑥1, 𝑥2 ∈ [0, 𝑥], 𝑥1 ≤ 𝑥2, in 𝐷𝑜𝑚𝑓𝑥 

0 ≤ ∫ 𝑓𝑥(𝑥)𝑑𝑥

𝑥2

𝑥1

≤ 1 

is the fraction of a population of consumers with the reservation prices of good 𝕏 falling within 

interval [𝑥1, 𝑥2]. 

The following properties hold: 𝑓𝑦(𝑦) = ∫ 𝑓(𝑥, 𝑦)𝑑𝑥
𝑥

0
, 𝐷𝑜𝑚𝑓𝑦 = [0, 𝑦] ⊂ ℝ and for every 

interval [𝑦1, 𝑦2], where 𝑦1, 𝑦2 ∈ [0, 𝑦], 𝑦1 ≤ 𝑦2, in 𝐷𝑜𝑚𝑓𝑦 0 ≤ ∫ 𝑓𝑦(𝑦)𝑑𝑦
𝑦2

𝑦1
≤ 1.  
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Univariate reservation price density function for good 𝕐 is defined analogously. Following the 

framework of Adams and Yellen (1976) monopolist can choose between three following 

strategies: 

1. Sell goods 𝕏 and 𝕐 separately -  pure component strategy (PC). 

2. Offer goods 𝕏 and 𝕐 for sale only in packages - pure bundling strategy (PB). 

3. Combine PC and  PB strategies by offering goods 𝕏 and 𝕐 not only separately but also 

in a package. This is mixed bundling strategy (MB). 

2.1 PURE COMPONENTS STRATEGY  

A consumer with single demand will purchase a unit at price 𝑝 if his reservation price 

of this good (weakly) exceeds this price. Therefore the market demand for any good at price 𝑝 

is a fraction of consumers with the reservation prices greater than or equal to 𝑝. Hence, we can 

define the demand function of good 𝕏 for PC strategy as follows: 

Definition 3 

The demand function for good 𝕏 under pure components strategy is a real function 𝑑𝑥
𝑃𝐶 with 

domain [0, 𝑥] given by: 

𝑑𝑥
𝑃𝐶(𝑝) = 1 − ∫𝑓𝑥(𝑥)𝑑𝑥 =

𝑝

0

∫𝑓𝑥(𝑥)𝑑𝑥

𝑥

𝑝

 

Demand function for good 𝕐 is defined analogously.  

2.2 PURE BUNDLING STRATEGY   

When a package consisting of the 𝕏 and 𝕐 goods is offered at price 𝑝, a consumer will make a 

purchase if and only if the sum of his or her reservation prices for these goods will be greater 

than or equal to 𝑝. This additivity property is assumed in most studies and adopt it as well. 

Consumer space under pure bundling strategy is graphed in Figure 1. We need to define demand 

function for the bundle for three different intervals of a price 𝑝: [0, 𝑦], (𝑦, 𝑥], (𝑥, 𝑥 + 𝑦]. 

Definition 4 

The demand function  of the bundle the 𝕏  and 𝕐 goods under pure bundling strategy is a real 

function 𝑑𝑏
𝑃𝐵 with domain [0, 𝑥 + 𝑦] given by: 
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𝑑𝑏
𝑃𝐵(𝑝) =

{
 
 
 
 
 

 
 
 
 
 
1 −∫𝑑𝑥 ∫ 𝑓(𝑥, 𝑦)𝑑𝑦,

𝑝−𝑥

0

𝑝

0

                                                                               0 ≤ 𝑝 ≤ 𝑦

1 − ∫ 𝑑𝑥∫𝑓(𝑥, 𝑦)𝑑𝑦

𝑦

0

𝑝−𝑦

0

− ∫ 𝑑𝑥 ∫ 𝑓(𝑥, 𝑦)𝑑𝑦,

𝑝−𝑥

0

𝑝

𝑝−𝑦

             𝑤ℎ𝑒𝑟𝑒        𝑦 < 𝑝 ≤ 𝑥

1 − ∫ 𝑑𝑥∫𝑓(𝑥, 𝑦)𝑑𝑦

𝑦

0

𝑝−𝑦

0

− ∫ 𝑑𝑥 ∫ 𝑓(𝑥, 𝑦)𝑑𝑦,

𝑝−𝑥

0

𝑥

𝑝−𝑦

                        𝑥 < 𝑝 ≤  𝑥 + 𝑦

 

Figure 1. Pure bundling strategy. 

 

 

 

 

 

 

 

 

 

 

Note that for symmetric case: 𝑥 = 𝑦 < +∞ demand for a bundle simplifies to: 

𝑑𝑏
𝑃𝐵(𝑝) =

{
  
 

  
 
1 − ∫𝑑𝑥 ∫ 𝑓(𝑥, 𝑦)𝑑𝑦,

𝑝−𝑥

0

𝑝

0

                                                          0 ≤ 𝑝 ≤ 𝑥

1 − ∫ 𝑑𝑥∫𝑓(𝑥, 𝑦)𝑑𝑦

𝑥

0

𝑝−𝑥

0

− ∫ 𝑑𝑥 ∫ 𝑓(𝑥, 𝑦)𝑑𝑦,

𝑝−𝑥

0

𝑥

𝑝−𝑥

       𝑥 < 𝑝 ≤  2𝑥

 

2.3 MIXED BUNDLING STRATEGY  

This is most interesting but also the most analytically demanding strategy, due to the 

fact that consumer can buy not only a package consisting of goods 𝕏  and 𝕐 but also each good 

separately. Essentially mixed bundling strategy introduces discrimination between consumers 

who now have four options to choose from: buying only good 𝕏, buying only good 𝕐, buying 

a package of both and at the end buying nothing. Consumer space under MB strategy is 

presented in Figure 2. 

𝑦 

𝑦 

𝐷𝑜𝑚𝑓  

𝑦 < 𝑝 ≤ 𝑥 

 

𝑥 < 𝑝 ≤ 𝑥 + 𝑦 

 

0 ≤ 𝑝 ≤ 𝑦 

 

𝑥 𝑥 

𝑝 − 𝑦 

 

𝑝 − 𝑥 
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Figure 2. Mixed bundling strategy. 

 

 

 

 

 

 

 

 

 

 

 

 

Under pure bundling monopolist needs to establish three different prices: 

 𝑝𝑥 - a price for good 𝕏; 

 𝑝𝑦 - a price for good 𝕐; 

 𝑝𝑏 - a price for the bundle consisting of 𝕏  and 𝕐. 

Note that if monopolist offers goods 𝕏 and 𝕐 separately at prices 𝑝𝑥 and 𝑝𝑦 then it makes sense 

to offer a bundle provided that its price includes a discount: 

𝑝𝑏 < 𝑝𝑥 + 𝑝𝑦. 

Based on this inequality, we get two conditions for implicit prices for 𝕏 and 𝕐 which must hold 

if monopolist wants to implement mixed bundling strategy effectively: 

𝑝𝑏 − 𝑝𝑥 < 𝑝𝑦 𝑎𝑛𝑑 𝑝𝑏 − 𝑝𝑦 < 𝑝𝑥. 

The interpretation of those conditions is simple: 𝑝𝑏 − 𝑝𝑥 > 0 is the implicit price of good 𝕐 for 

a consumer who would buy only good 𝕏 at a price 𝑝𝑥 and 𝑝𝑏 − 𝑝𝑦 > 0 is the implicit price of 

good 𝕏 for the consumer who would buy only good 𝕐 at a price 𝑝𝑦. Implicit prices for 𝕏 and 𝕐 

are also bounded from the above by the price of a bundle or the maximal reservation price in 

𝐶0 

𝑫𝒐𝒎𝒇  

𝑦 

 

𝑦 

𝐶𝑦 

𝒑𝒃 

𝒑𝒚 

𝑝𝑏 − 𝑝𝑥 

𝑥 𝑥 𝑝𝑥 

 

𝒑𝒃 

 

𝑝𝑏 − 𝑝𝑦 

 

𝐶𝑥 

𝐶𝑏 



9 

 

the population - whichever is smaller. Thus for every 𝑝𝑥 in [0, 𝑥], 𝑝𝑦 in [0, 𝑦], 𝑝𝑏 in [0, 𝑥 + 𝑦] 

we have the following restrictions on (𝑝𝑦, 𝑝𝑥, 𝑝𝑏 ): 

0 < 𝑝𝑏 − 𝑝𝑥 < 𝑝𝑦 < 𝑚𝑖𝑛(𝑝𝑏 , 𝑦), 

and 

0 < 𝑝𝑏 − 𝑝𝑦 < 𝑝𝑥 < 𝑚𝑖𝑛(𝑝𝑏 , 𝑥). 

In Figure 2, we can see the following four demand segments: 

𝐶0 = {(𝑥, 𝑦)  ∈  𝐷𝑜𝑚𝑓|𝑥 < 𝑝𝑥 𝑎𝑛𝑑 𝑦 < 𝑝𝑦 𝑎𝑛𝑑 𝑥 + 𝑦 < 𝑝𝑏 } 

is the area with consumers who buy nothing; 

𝐶𝑥 = {(𝑥, 𝑦)  ∈  𝐷𝑜𝑚𝑓|𝑥 ≥ 𝑝𝑥 𝑎𝑛𝑑 𝑦 < 𝑝𝑏 − 𝑝𝑥} 

is the area with consumers who buy only good 𝕏; 

𝐶𝑦 = {(𝑥, 𝑦)  ∈  𝐷𝑜𝑚𝑓|𝑦 ≥ 𝑝𝑦 𝑎𝑛𝑑 𝑥 < 𝑝𝑏 − 𝑝𝑦} 

is the area with consumers who buy only good 𝕐; 

𝐶𝑏 = {(𝑥, 𝑦)  ∈  𝐷𝑜𝑚𝑓|𝑥 ≥ 𝑝𝑏 − 𝑝𝑦 𝑎𝑛𝑑 𝑦 ≥ 𝑝𝑏 − 𝑝𝑥 𝑎𝑛𝑑 𝑥 + 𝑦 ≥ 𝑝𝑏 } 

is the area with consumers who buy only the bundle. Based on the above, for mixed bundling 

strategy we need to define: 

 demand for good 𝕏, 

 demand for good 𝕐, 

 demand for the bundle consisting of both goods. 

Definition 5 

The demand function for good 𝕏 under mixed bundling strategy is a real function 𝑑𝑥
𝑀𝐵 with 

domain (𝑝𝑏 − 𝑝𝑦, 𝑚𝑖𝑛(𝑝𝑏 , 𝑥)) × [0, 𝑥 + 𝑦] given by 

𝑑𝑥
𝑀𝐵(𝑝𝑥, 𝑝𝑏) = ∫ 𝑑𝑦 ∫𝑓(𝑥, 𝑦)𝑑𝑥

𝑥

𝑝𝑥

𝑝𝑏−𝑝𝑥

0

. 

Definition 6 

The demand function for good 𝕐 under mixed bundling strategy is a real function 𝑑𝑦
𝑀𝐵 with 

domain (𝑝𝑏 − 𝑝𝑥, 𝑚𝑖𝑛(𝑝𝑏 , 𝑦)) × [0, 𝑥 + 𝑦] given by 
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𝑑𝑦
𝑀𝐵(𝑝𝑦, 𝑝𝑏) = ∫ 𝑑𝑥 ∫𝑓(𝑥, 𝑦)𝑑𝑦

𝑦

𝑝𝑦

𝑝𝑏−𝑝𝑦

0

. 

Definition 7 

The demand function for the bundle under mixed bundling strategy is a real function 𝑑𝑏
𝑀𝐵 with 

domain (𝑝𝑏 − 𝑝𝑦, 𝑚𝑖𝑛(𝑝𝑏 , 𝑥)) × (𝑝𝑏 − 𝑝𝑥, 𝑚𝑖𝑛(𝑝𝑏 , 𝑦)) × [0, 𝑥 + 𝑦] given by 

𝑑𝑏
𝑀𝐵(𝑝𝑥, 𝑝𝑦, 𝑝𝑏) = ∫ 𝑑𝑥 ∫ 𝑓(𝑥, 𝑦)𝑑𝑦

𝑦

𝑝𝑏 −𝑥

𝑝𝑥

𝑝𝑏−𝑝𝑦
+ ∫ 𝑑𝑦 ∫ 𝑓(𝑥, 𝑦)𝑑𝑦

𝑥

𝑝𝑥

𝑦

𝑝𝑏−𝑝𝑥
. independent uniform 

marginal densities 

Now we apply the general structure of bundling problem to the case when reservation prices 

for both goods are independent and uniformly distributed. Under these assumptions bivariate 

joint reservation price distribution takes the form 𝑓(𝑥, 𝑦) =
1

𝑥 𝑦
 with 𝐷𝑜𝑚𝑓 = [0, 𝑥] × [0, 𝑦] ⊂

ℝ
2
, where 𝑥 ∈ ℝ, 𝑦 ∈ ℝ and 𝑥 ≥ 𝑦 > 0, the demand functions evaluate to: 

1. For PC strategy (Definition 3) 

𝑑𝑥
𝑃𝐶(𝑝) = 1 −

1

𝑥  
𝑝, 𝑑𝑦

𝑃𝐶(𝑝) = 1 −
1

𝑦  
𝑝, 

2. For PB strategy (Definition 4) 

𝑑𝑏
𝑃𝐵(𝑝) =

{
  
 

  
 1 −

1

2𝑥 𝑦
𝑝2,                                                                                          0 ≤ 𝑝 ≤ 𝑦

1 −
1

2𝑥 𝑦
(𝑝2 − (𝑝 − 𝑦)2),                             𝑓𝑜𝑟                          𝑦 < 𝑝 ≤ 𝑥

1 −
1

2𝑥 𝑦
(𝑝2 − (𝑝 − 𝑥)2 − (𝑝 − 𝑦)2),                                  𝑥 < 𝑝 ≤ 𝑥 + 𝑦

 

3. For MB strategy (Definitions 5, 6 and 7) 

𝑑𝑥
𝑀𝐵(𝑝𝑥, 𝑝𝑏) =

1

𝑥 𝑦
(𝑥 − 𝑝𝑥)(𝑝𝑏 − 𝑝𝑥), 𝑑𝑦

𝑀𝐵(𝑝𝑦, 𝑝𝑏) =
1

𝑥 𝑦
(𝑦 − 𝑝𝑦)(𝑝𝑏 − 𝑝𝑦), 

𝑑𝑏
𝑀𝐵(𝑝𝑥, 𝑝𝑦, 𝑝𝑏) = 1 −

1

𝑥 𝑦
(𝑥(𝑝𝑏 − 𝑝𝑥) + 𝑦(𝑝𝑏 − 𝑝𝑦)) −

1

2𝑥 𝑦
((𝑝𝑥

2 + 𝑝𝑦
2) − 𝑝𝑏

2). 

Eckalbar (2010) has analyzed bundling problem under the above assumptions. He shows that 

for all relevant values of marginal cost mixed bundling strategy generates the highest profits 

but reduces consumer surplus compared to separate sales of both goods. His second conclusion 

states that pure bundling will be inferior to pure components if marginal costs exceeds certain 

level. Our analysis extends Eckalbar’s results beyond independence case. 

2.4 PROFIT OPTIMIZATION  
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We can now formulate monopoly profit optimization. With the three strategies at hand, 

generic profit formula for monopolist is given by: 

𝛱𝑚𝑎𝑥 = max
(𝑝𝑥

𝑃𝐶,𝑝𝑦
𝑃𝐶,𝑝𝑏

𝑃𝐵,𝑝𝑥
𝑀𝐵,𝑝𝑦

𝑀𝐵,𝑝𝑏
𝑀𝐵)

{𝛱𝑃𝐶(𝑝𝑥
𝑃𝐶 , 𝑝𝑦

𝑃𝐶), 𝛱𝑃𝐵(𝑝𝑏
𝑃𝐵), 𝛱𝑀𝐵(𝑝𝑥

𝑀𝐵, 𝑝𝑦
𝑀𝐵 , 𝑝𝑏

𝑀𝐵)}      (1) 

where: 

  𝛱𝑃𝐶(𝑝𝑥
𝑃𝐶 , 𝑝𝑦

𝑃𝐶) is profit from PC strategy, 

 𝛱𝑃𝐵(𝑝𝑏
𝑃𝐵) is profit from PB strategy, 

 𝛱𝑀𝐵(𝑝𝑥
𝑀𝐵, 𝑝𝑦

𝑀𝐵, 𝑝𝑏
𝑀𝐵) is profit from MB strategy, 

 𝑝𝑥
𝑃𝐶 , 𝑝𝑦

𝑃𝐶  are prices of the 𝕏  and 𝕐 goods respectively for PC strategy,  

 𝑝𝑏
𝑃𝐵 is price of the bundle for PB strategy, 

 𝑝𝑥
𝑀𝐵, 𝑝𝑦

𝑀𝐵, 𝑝𝑏
𝑀𝐵 are prices of the 𝕏, 𝕐 and the bundle both goods respectively for MB 

strategy. 

To evaluate expression (1) we need to specify the cost structure. We will follow the main stream 

approach adopted in bundling literature and assume additive cost function with constant 

marginal costs and no fixed costs. It should be noted that this assumption rather disfavors 

bundling as it rules out economies of scale and scope which likely increase gains from selling 

product in packages. Profit functions are now given by: 

1. For PC strategy 

𝛱𝑃𝐶(𝑝𝑥
𝑃𝐶 , 𝑝𝑦

𝑃𝐶) = 𝛱𝑥
𝑃𝐶(𝑝𝑥

𝑃𝐶) + 𝛱𝑦
𝑃𝐶(𝑝𝑦

𝑃𝐶)     (3) 

where: 

  𝛱𝑥
𝑃𝐶(𝑝𝑥

𝑃𝐶) = 𝑑𝑥
𝑃𝐶(𝑝𝑥

𝑃𝐶)(𝑝𝑥
𝑃𝐶 − 𝑐𝑥) is profit from selling good 𝕏 under PC, 

 𝑑𝑥
𝑃𝐶  is demand function for good 𝕏 under PC (Definition 3), 

 𝑐𝑥 is marginal costs of good 𝕏. 

Profit formula for good 𝕐 is analogous. 

 

2. For PB strategy 

𝛱𝑃𝐵(𝑝𝑏
𝑃𝐵) =  𝑑𝑏

𝑃𝐵(𝑝𝑏
𝑃𝐵)(𝑝𝑏

𝑃𝐵 − 𝑐𝑏)     (4) 

where: 

 𝑑𝑏
𝑃𝐵 is demand function  of the bundle with 𝕏 and 𝕐 goods under PB (definition 4) 

 𝑐𝑏 = 𝑐𝑥 + 𝑐𝑦 is marginal cost of the bundle. 

3. For MB strategy  
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𝛱𝑀𝐵(𝑝𝑥
𝑀𝐵, 𝑝𝑦

𝑀𝐵, 𝑝𝑏
𝑀𝐵) = 𝛱𝑥

𝑀𝐵(𝑝𝑥
𝑀𝐵, 𝑝𝑏

𝑀𝐵) + 𝛱𝑦
𝑀𝐵(𝑝𝑦

𝑀𝐵, 𝑝𝑏
𝑀𝐵) +  𝛱𝑏

𝑀𝐵(𝑝𝑥
𝑀𝐵 , 𝑝𝑦

𝑀𝐵, 𝑝𝑏
𝑀𝐵)     (5) 

where: 

  𝛱𝑥
𝑀𝐵(𝑝𝑥

𝑀𝐵, 𝑝𝑏
𝑀𝐵) = 𝑑𝑥

𝑀𝐵(𝑝𝑥
𝑀𝐵, 𝑝𝑏

𝑀𝐵)(𝑝𝑥
𝑀𝐵 − 𝑐𝑥)  is profit from selling 𝕏 under MB, 

 𝛱𝑦
𝑀𝐵(𝑝𝑦

𝑀𝐵, 𝑝𝑏
𝑀𝐵) = 𝑑𝑦

𝑀𝐵(𝑝𝑦
𝑀𝐵 , 𝑝𝑏

𝑀𝐵)(𝑝𝑦
𝑀𝐵 − 𝑐𝑦)  is profit from selling 𝕐 under  MB, 

 𝛱𝑏
𝑀𝐵(𝑝𝑥

𝑀𝐵, 𝑝𝑦
𝑀𝐵, 𝑝𝑏

𝑀𝐵) =  𝑑𝑏
𝑀𝐵(𝑝𝑥

𝑀𝐵, 𝑝𝑦
𝑀𝐵 , 𝑝𝑏

𝑀𝐵)(𝑝𝑏
𝑀𝐵 − 𝑐𝑏)   is profit from selling the 

bundle under MB, 

 𝑑𝑥
𝑀𝐵 , 𝑑𝑦

𝑀𝐵𝑑𝑏
𝑀𝐵 are demand functions for goods 𝕏, 𝕐 and the bundle respectively, under 

MB (see, Definitions 5, 6, 7). 

2.5 SETTING THE FRAMEWORK :  JOINT DENSITY 𝑓𝑎 

With a basic model at hand we can introduce reservation price space which has desirable 

properties for analysis of bundling problem, namely uniform marginal densities and a closed-

form formula for correlation coefficient. Let 𝑓𝑎 denote a joint bivariate density function of 

reservation prices for two goods, with a single shape parameter a. The domain of 𝑓𝑎 where 

density is positive forms a ‘belt’, which is symmetric around the diagonal of square [0, x] ×

[0, x] as illustrated in Figure 3. Parameter a measures width of the ‘belt’, which in this case 

equals 𝑑 = 𝑎√2. Depending on the value of a the ‘belt’ shrinks towards a diagonal line or 

expands to the whole square. The key feature of 𝑓𝑎 is that density in both triangular areas is 

twice larger than in rectangular area Cooke (2009).6 In what follows we show that 𝑓𝑎 : (i) is 

indeed a proper density function; (ii) always has uniform margins and (iii) has a closed form 

expression for correlation coefficient which covers full range of values in [-1,+1].  

We introduce two variants of 𝑓𝑎 density. By 𝑓𝑎− we denote a function with belt-shaped 

domain directed towards top-left corner of [0, x] × [0, x] square and by 𝑓𝑎+ a function with 

belt-shaped domain directed towards top-right corner. 7 Both variants cover respectively 

positive and negative correlation of reservation prices for goods 𝕏 and 𝕐. In Figure 3, we show 

a negative belt: 𝐷𝑜𝑚𝑓𝑎− for 𝑎 ∈ (0,
𝑥

2
] and in Figure 4 for 𝑎 ∈ (

𝑥

2
, 𝑥]. We distinguish both 

subranges for parameter a because the definition of  𝑓𝑎− slightly differs in each case, as is 

shown in Propositions 1a and 1b. 

                                                 

6 Andrew Cooke proposed this density in a short technical note outside bundling context. We credit him here. 
7 Throughout the text we use the following naming convention: we refer to domain of 𝑓𝑎− as negative belt and 𝑓𝑎+ as positive 

belt. 
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Figure 3. Negative belt: 𝑫𝒐𝒎𝒇𝒂− for 𝒂 ∈ (𝟎,
𝒙

𝟐
]. 

 

 

 

 

 

 

 

 

 

 

 

 

In the following two propositions we formally define  𝑓𝑎− and prove uniformity of its margins. 

Proposition 1a. Function 𝑓𝑎− for 𝑎 ∈ (0,
𝑥

2
] given by: 

⋀ 𝑓𝑎−(𝑥, 𝑦) =

{
 
 

 
 

1

𝑎𝑥
                               𝑥 + (𝑥 − 𝑎) ≤ 𝑦 ≤ 𝑥

1

2𝑎𝑥
       − 𝑥 + (𝑥 + 𝑎) ≤ 𝑦 < 𝑥 + (𝑥 − 𝑎)

0                                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
0≤𝑥≤𝑎

                    

⋀ 𝑓𝑎−(𝑥, 𝑦) = {
1

2𝑎𝑥
   − 𝑥 + (𝑥 − 𝑎) ≤ 𝑦 ≤ −𝑥 + (𝑥 + 𝑎)

0                                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒𝑎<𝑥≤𝑥−𝑎

          (6)  

⋀ 𝑓𝑎−(𝑥, 𝑦) =

{
 
 

 
 

1

2𝑎𝑥
      𝑥 − (𝑥 − 𝑎) < 𝑦 ≤ −𝑥 + (𝑥 + 𝑎)

1

𝑎𝑥
                               0 ≤ 𝑦 ≤  𝑥 − (𝑥 − 𝑎)

0                                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑥−𝑎 <𝑥≤𝑥

                   

is a reservation price joint density function for goods 𝕏 and 𝕐 with uniform marginal densities. 

For proof, see Appendix. Next proposition defines 𝑓𝑎− in a range 𝑎 ∈ (
𝑥

2
, 𝑥]. 

Figure 4. Negative belt: 𝑫𝒐𝒎𝒇𝒂− for 𝒂 ∈ (
𝒙

𝟐
, 𝒙]. 

 

𝑎 

−𝑎

𝑎 

−𝑎

𝑥 

−𝑎

𝑥 𝑥 − 𝑎 

−𝑎

𝑥 

−𝑎

𝑦 

𝑥 − 𝑎 

−𝑎

𝑥 

−𝑎

𝑦 
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Proposition 1b. Function 𝑓𝑎− for 𝑎 ∈ (
𝑥

2
, 𝑥] given by: 

⋀ 𝑓𝑎−(𝑥, 𝑦) =

{
 
 

 
 

1

𝑎𝑥
                               𝑥 + (𝑥 − 𝑎) ≤ 𝑦 ≤ 𝑥

1

2𝑎𝑥
       − 𝑥 + (𝑥 + 𝑎) ≤ 𝑦 < 𝑥 + (𝑥 − 𝑎)

0                                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
0≤𝑥≤𝑥−𝑎

                    

⋀ 𝑓𝑎−(𝑥, 𝑦) =

{
 
 

 
 
1

𝑎𝑥
                                  0 ≤ 𝑦 ≤ 𝑥 − (𝑥 − 𝑎)

1

2𝑎𝑥
            𝑥 − (𝑥 − 𝑎) ≤ 𝑦 ≤ 𝑥 + (𝑥 − 𝑎) 

1

𝑎𝑥
                                𝑥 + (𝑥 − 𝑎) ≤ 𝑦 ≤ 𝑥

𝑥−𝑎<𝑥≤𝑎

          (7)  

⋀ 𝑓𝑎−(𝑥, 𝑦) =

{
 
 

 
 

1

2𝑎𝑥
      𝑥 − (𝑥 − 𝑎) < 𝑦 ≤ −𝑥 + (𝑥 + 𝑎)

1

𝑎𝑥
                               0 ≤ 𝑦 ≤  𝑥 − (𝑥 − 𝑎)

0                                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑎 <𝑥≤𝑥

                   

is a reservation price joint density function for goods 𝕏 and 𝕐 with uniform marginal densities. 

Proof of Proposition 1b is analogous to Proposition 1a and is therefore omitted. Having 

established negative belt density function for the whole range of parameter a, in Propositions 

2a and 2b we introduce its positive belt variant. 

 

Proposition 2a. Function 𝑓𝑎+ for 𝑎 ∈ (0,
𝑥

2
] given by: 
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⋀ 𝑓𝑎+(𝑥, 𝑦) =

{
 
 

 
 

1

𝑎𝑥
                                    0 ≤ 𝑦 < −𝑥 + 𝑎

1

2𝑎𝑥
                         − 𝑥 + 𝑎 ≤ 𝑦 ≤ 𝑥 + 𝑎

0                                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
0≤𝑥≤𝑎

                 

⋀ 𝑓𝑎+(𝑥, 𝑦) = {
1

2𝑎𝑥
                             𝑥 − 𝑎 ≤ 𝑦 ≤ 𝑥 + 𝑎

0                                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒𝑎<𝑥≤𝑥−𝑎

          (8)  

⋀ 𝑓𝑎+(𝑥, 𝑦) =

{
 
 

 
 

1

2𝑎𝑥
            𝑥 − 𝑎 ≤ 𝑦 < −𝑥 + (2𝑥 − 𝑎)

1

𝑎𝑥
                     − 𝑥 + (2𝑥 − 𝑎) ≤ 𝑦 ≤  𝑥

0                                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑥−𝑎 <𝑥≤𝑥

                   

is a reservation price joint density function for goods 𝕏 and 𝕐 with uniform marginal densities. 

Proposition 2b. Function 𝑓𝑎+ for 𝑎 ∈ (
𝑥

2
, 𝑥] given by: 

⋀ 𝑓𝑎+(𝑥, 𝑦) =

{
 
 

 
 

1

𝑎𝑥
                                           0 ≤ 𝑦 ≤ −𝑥 + 𝑎

1

2𝑎𝑥
                                 − 𝑥 + 𝑎 ≤ 𝑦 < 𝑥 + 𝑎

0                                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
0≤𝑥≤𝑥−𝑎

                    

⋀ 𝑓𝑎+(𝑥, 𝑦) =

{
 
 

 
 
1

𝑎𝑥
                                              0 ≤ 𝑦 ≤ −𝑥 + 𝑎

1

2𝑎𝑥
                 − 𝑥 + 𝑎 ≤ 𝑦 ≤ −𝑥 + (2𝑥 − 𝑎) 

1

𝑎𝑥
                                − 𝑥 + (2𝑥 − 𝑎) ≤ 𝑦 ≤ 𝑥

𝑥−𝑎<𝑥≤𝑎

          (9)  

⋀ 𝑓𝑎+(𝑥, 𝑦) =

{
 
 

 
 

1

2𝑎𝑥
                    𝑥 − 𝑎 ≤ 𝑦 ≤  −𝑥 + (2𝑥 − 𝑎)

1

𝑎𝑥
                               − 𝑥 + (2𝑥 − 𝑎) < 𝑦 ≤ 𝑥

0                                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑎 <𝑥≤𝑥

               

is a reservation price joint density function for goods 𝕏 and 𝕐 with uniform marginal densities. 

Proofs of Propositions 2a and 2b are analogous to Proposition 1a and hence are omitted. In 

Figure 5, we graph 𝐷𝑜𝑚𝑓𝑎+ for 𝑎 ∈ (0,
𝑥

2
]. We skip the illustration of positive belt-shaped 

domain for 𝑎 ∈ (
𝑥

2
, 𝑥]. 

The reason why 𝑓𝑎 has uniform margins is that the joint density in both triangular areas is twice 

bigger then density in rectangular area. From managerial perspective heavier triangular corners 

represent explicit market segments of consumers having either diverging valuations for both 

goods - that is low for the first and high for the second, or converging valuations - that is low 

(negative belt) or high (positive belt) reservation prices for both goods. An interesting 
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possibility follows from the construction of 𝑓𝑎. Using summation of 𝑓𝑎(±)(𝑥, 𝑦), one should 

be able to construct a joint density function over 𝐷𝑜𝑚𝑓𝑎(±) ∪  𝐷𝑜𝑚𝑓𝑏(±) which also maintains 

uniformity of marginal distributions. Hence our approach to bundling analysis can be applied 

to a wider class of demand structures. For example one could model a situation where there are 

four segments of consumers having converging/diverging preferences for both goods 𝕏 or 𝕐 or 

a preference for only one good, preserving linear demand functions for both components. 

2.6 CORRELATION OF RESERVATION PRICES U NDER JOINT DENSITY 𝑓𝑎 

In the previous section we have proven that fa(x, y) has uniform margins. In this section 

we derive correlation coefficient between its marginal distributions.  

Proposition 3a. For reservation price density function 𝑓𝑎− given by (6) the correlation 

coefficient between the consumer’s reservation prices goods 𝕏 and 𝕐 is given by the following 

formula: 

𝜌𝑥,𝑦 = −
𝑎3 − 2𝑎2𝑥 + 𝑥

3

𝑥
3   (10) 

For proof see Appendix. Note that for 𝑎 = 0, we obtain perfect negative correlation 𝜌𝑥,𝑦 = −1 

and for maximum value of parameter (𝑎 = 𝑥) we obtain 𝜌𝑥,𝑦 = 0 (independence).  

Figure 5. Positive belt: 𝑫𝒐𝒎𝒇𝒂+ for 𝒂 ∈ (𝟎,
𝒙

𝟐
]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑎 

−𝑎
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Proposition 3b. For the reservation prices density function 𝑓𝑎+ given by (8) the correlation 

coefficient between the consumer’s reservation prices goods 𝕏 and 𝕐 is given by the following 

formula: 

𝜌𝑥,𝑦 =
𝑎3 − 2𝑎2𝑥 + 𝑥

3

𝑥
3   (11) 

Derivation of this formula is analogous to (10) so we leave it without a proof. For positive belt, 

perfect positive correlation 𝜌𝑥,𝑦 = 1 holds for 𝑎 = 0 and 𝜌𝑥,𝑦 = 0 for 𝑎 = 𝑥 (independence). 

For both variants of joint density with belt-shaped domain, the absolute value of correlation 

between individual reservation prices is nonlinearly increasing in a. With formulas (10) and 

(11) we are equipped to analyze optimality of monopoly pure and mixed bundling strategies for 

the full range of correlation and marginal costs. 

SOLUTION TO BUNDLING PROBLEM  

1.1. PURE COMPONENTS STRAT EGY  

For both reservation price density functions (𝑓𝑎−and 𝑓𝑎+) marginal density functions of good 

𝕏 (𝑓𝑥
𝑎−and 𝑓𝑥

𝑎+) and good 𝕐 (𝑓𝑦
𝑎−and 𝑓𝑦

𝑎+) do not depend on parameter 𝑎 and are given by: 

⋀ 𝑓𝑥
𝑎−(𝑥) = 𝑓𝑥

𝑎+(𝑥) = 𝑓𝑦
𝑎−(𝑥) = 𝑓𝑦

𝑎+(𝑥) =
1

𝑥
 

0≤𝑥≤𝑥

, 

So, the demand functions for each good under pure components are given by: 

𝑑𝑥
𝑃𝐶𝑎−(𝑝) = 𝑑𝑥

𝑃𝐶𝑎+(𝑝) = 𝑑𝑦
𝑃𝐶𝑎−(𝑝) = 𝑑𝑦

𝑃𝐶𝑎+(𝑝) = 1 −
1

𝑥  
𝑝 

and a profit of monopolist writes: 

𝛱𝑥
𝑃𝐶𝑎−(𝑝) = 𝛱𝑥

𝑃𝐶𝑎+(𝑝) = (𝑝 − 𝑐𝑥) (1 −
1

𝑥  
𝑝), 

𝛱𝑦
𝑃𝐶𝑎−(𝑝) = 𝛱𝑦

𝑃𝐶𝑎+(𝑝) = (𝑝 − 𝑐𝑦) (1 −
1

𝑥  
𝑝) 

In this case first order condition are sufficient for derivation of optimal prices. Hence 

monopolist will choose the following prices and earn the following profits under PC strategy: 

𝑝𝑥
𝑃𝐶𝑎− = 𝑝𝑥

𝑃𝐶𝑎+ =
𝑥 + 𝑐𝑥
2

, 𝑝𝑦
𝑃𝐶𝑎− = 𝑝𝑦

𝑃𝐶𝑎+ =
𝑥 + 𝑐𝑦

2
. 

𝛱𝑥
𝑃𝐶𝑎−(𝑝𝑥

𝑃𝐶𝑎−) = 𝛱𝑥
𝑃𝐶𝑎+(𝑝𝑥

𝑃𝐶𝑎+) =
(𝑥 − 𝑐𝑥)

2

4𝑥
 

𝛱𝑦
𝑃𝐶𝑎−(𝑝𝑦

𝑃𝐶𝑎−) = 𝛱𝑦
𝑃𝐶𝑎+(𝑝𝑦

𝑃𝐶𝑎+) =  
(𝑥 − 𝑐𝑦)

2

4𝑥
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𝛱𝑃𝐶𝑎−(𝑝𝑥
𝑃𝐶𝑎−, 𝑝𝑦

𝑃𝐶𝑎−) = 𝛱𝑃𝐶𝑎+(𝑝𝑥
𝑃𝐶𝑎+, 𝑝𝑦

𝑃𝐶𝑎+) =
(𝑥 − 𝑐𝑥)

2 + (𝑥 − 𝑐𝑦)
2

4𝑥
 

1.2. PURE BUNDLING  

Profitability of pure bundling for both the cases of positive and negative correlation needs to be 

analyzed separately. 

1.2.1.  NEGATIV E COR RE LATIO N :  𝑓𝑎− JOIN T DEN SIT Y  

The graph of the demand space 𝑓𝑎− under PB strategy is presented  in Figure 7. Depending on 

the price for the bundle, monopolist might sell to all or only to a subset of consumers located 

in rectangular and triangular areas of the belt-shaped domain. Thus several cases must be 

considered to locate buyers depending on the price. 

Figure 7. PB strategy under negative belt: 𝑫𝒐𝒎𝒇𝒂−. 

 

 

 

 

 

 

 

 

 

 

 

Demand function for the bundle 𝑑𝑏
𝑃𝐵𝑎− is given by: 

𝑑𝑏
𝑃𝐵𝑎−(𝑝) =

{
 
 

 
 

1                                                                                       0 ≤ 𝑝 ≤ 𝑥 − 𝑎

{
1 −

1

2𝑎𝑥
𝑝(𝑝 − (𝑥 − 𝑎))                                            𝑥 − 𝑎 < 𝑝 ≤ 𝑥

1

2𝑎𝑥
((𝑥 + 𝑎) − 𝑝)(2𝑥 − 𝑝)                                     𝑥 < 𝑝 ≤ 𝑥 + 𝑎

   

0                                                                                               𝑝 > 𝑥 + 𝑎

 

𝑥 

−𝑎

𝑥 

𝑥 

−𝑎

𝑦 

 
𝒑 − (𝒙 − 𝒂)

𝟐
,
𝒑 + (𝒙 − 𝒂)

𝟐
  

 
𝒑 + (𝒙 − 𝒂)

𝟐
,
𝒑 − (𝒙 − 𝒂)

𝟐
  

(𝒑 − 𝒙, 𝒙) 



19 

 

Demand for bundles is nonlinear in price. In Figure 8 we graph demand function for 𝑥 = 10 

and different values of parameter 𝑎 ∈ (0,10). 

Figure 8 shows that there is a strong dependency between parameter 𝑎 and curvature of demand 

function under pure bundling. For the case of perfect negative correlation (𝑎 = 0), demand 

curve is inelastic and monopolist can capture the whole consumer surplus. Consequently for 

higher values of  parameter 𝑎, demand becomes more elastic. All demand curves intersect at 

price 𝑝 = 𝑥 for which 50% consumers buy the bundle. This is a consequence of the symmetry 

of  𝐷𝑜𝑚𝑓𝑎− over diagonal of the square [0, x] × [0, x].  

Figure 8. Demand function under PB,  𝒅𝒃
𝑷𝑩𝒂− for 𝒙 = 𝟏𝟎 and 𝒂 ∈ (𝟎, 𝟏𝟎) . 

 

The profit for this demand function is given by: 

𝛱𝑃𝐵𝑎−(𝑝) =

{
  
 

  
 

(𝑝 − 𝑐𝑏)                                                                            0 ≤ 𝑝 ≤ 𝑥 − 𝑎

{
 
 

 
 (𝑝 − 𝑐𝑏)  1 −

1

2𝑎𝑥
𝑝(𝑝 − (𝑥 − 𝑎))                          𝑥 − 𝑎 < 𝑝 ≤ 𝑥

(𝑝 − 𝑐𝑏)  
1

2𝑎𝑥
((𝑥 + 𝑎) − 𝑝)(2𝑥 − 𝑝)                    𝑥 < 𝑝 ≤ 𝑥 + 𝑎

   

0                                                                                                   𝑝 > 𝑥 + 𝑎

 

First order conditions yield a closed form expression for optimal price of monopolist under PB 

strategy: 

𝑝𝑜𝑝𝑡 =

√𝑥
2
+ (4𝑎 − 𝑐𝑏)𝑥 + 𝑐𝑏

2 + 𝑎𝑐𝑏 + 𝑎2 + 𝑥 + 𝑐𝑏 − 𝑎

3
. 

Optimal PB profit is given by: 
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𝛱𝑃𝐵𝑎−(𝑝𝑜𝑝𝑡) = (𝑝𝑜𝑝𝑡 − 𝑐𝑏)  1 −
1

2𝑎𝑥
𝑝𝑜𝑝𝑡(𝑝𝑜𝑝𝑡 − (𝑥 − 𝑎)) . 

When consumer valuations are negatively correlated, monopolist using pure bundling always 

optimizes price on the same segment of demand curve, but his profit obviously depends on 

degree of correlation as marked by parameter 𝑎. In Figure 9 we graph profit function 𝛱𝑃𝐵𝑎− 

for 𝑥 = 10, 𝑐𝑏 = 0 and different values of correlation parameter 𝑎 ∈ (0,10). As can be seen 

there, profit function behaves in close correspondence with the demand function shown in 

Figure 8. Profit takes the highest value for 𝑎 = 0 (perfect negative correlation) and the lowest 

for 𝑎 = 𝑥 (independence). Marginal costs of a bundle 𝑐𝑏 also have a substantial impact on the 

profitability of pure bundling. When costs are positive, those customers who have strong 

preference for only one good but buy a bundle are in fact subsidized to do so. Thus pure 

components might generate higher profit then pure bundling for certain level of marginal costs. 

In Figure 10 below, we graph profit functions 𝛱𝑃𝐵𝑎− and 𝛱𝑃𝐶𝑎− for 𝑥 = 10, 𝑎 = 2 and different 

values of cost parameter 𝑐𝑏 ∈ (0,8). Note that 𝑎 = 2 corresponds to strong negative correlation 

𝜌𝑥,𝑦 = −0,92. Two immediate observations follow: First, optimal prices (corresponding to 

maximal values of profit functions) are increasing with marginal costs of component goods and 

the bundle which obviously restricts total demand and reduces total profits of monopolist. Next, 

it looks that for low cost levels  𝑐𝑏 = 0  and 𝑐𝑏 = 2  profit from pure bundling is greater than 

from pure components as shown by dashed red and green lines. However even for very strong 

negative correlation (note that 𝑎 = 2 corresponds to strong negative correlation 𝜌𝑥,𝑦 = −0,92),  

this relation becomes reversed for sufficiently large marginal cost. Starting from 𝑐𝑏 = 4  pure 

components strategy yields higher profit then pure bundling. Apparently subsidization becomes 

too costly and cannot be recovered by the profits from central segment of the demand function.  

Later on we show that for any degree of correlation, including positive, there exist marginal 

cost 𝑐𝑏
∗ for which both strategies generate the same level of profit. Moreover, this critical value 

of marginal costs for which monopolist is indifferent between both strategies is decreasing with 

parameter 𝑎. This means that the range of costs for which pure bundling outperforms pure 

components shrinks with correlation of consumer valuations to zero. In fact our model shows 

that for 𝜌 > 0.2 bundling is never better then pure components, but still can be worse off if 

marginal costs are large enough. 
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Figure 9. Profit function under PB, 𝜫𝑷𝑩𝒂− for 𝐱 = 𝟏𝟎, 𝒄𝒃 = 𝟎 and 𝐚 ∈ (𝟎, 𝟏𝟎) . 

 

Figure 10. Profit functions 𝜫𝑷𝑩𝒂−, 𝜫𝑷𝑪𝒂− for 𝐱 = 𝟏𝟎, 𝐚 = 𝟐 and 𝒄𝒃 ∈ (𝟎, 𝟖).

 

In the next subsection, we analyze a pattern of bundling optimality for the case of positively 

correlated demands. 

1.2.2.  POSITIV E COR R ELATIO N :  T HE  𝑓𝑎+ JOINT  DENSIT Y  

The graph of the demand space 𝑓𝑎+  under PB strategy is presented  in Figure 11. Depending 

on the price for the bundle, monopolist might sell only to consumers located in the upper 

triangle or also to some or all consumers located in the rectangular area of the right belt-shaped 

domain. Eventually, if he sets very low price, also consumers from the lower tringle will buy.  
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Figure 11. PB strategy under left belt-shaped 𝑫𝒐𝒎𝒇𝒂+. 

    

 

 

 

 

 

 

 

 

 

 

 

Thus again several cases must be considered to locate buyers depending on the price. In this 

case the demand function  of the bundle 𝑑𝑏
𝑃𝐵𝑎+ is given by:  

𝑑𝑏
𝑃𝐵𝑎+(𝑝) =

{
 
 
 

 
 
 1 −

1

2𝑎𝑥
𝑝2                                                                           0 ≤ 𝑝 ≤ 𝑎

{
1 −

1

2𝑎𝑥
𝑎𝑝                                                                 𝑎 < 𝑝 ≤ 2𝑥 − 𝑎

1

2𝑎𝑥
(2𝑥 − 𝑝)2                                                         2𝑥 − 𝑎 < 𝑝 ≤ 2𝑥

   

0                                                                                                    𝑝 > 2𝑥

 

For the right belt-shaped domain demand function is composed of 3 segments out of which the 

middle one is linear.  

The profit function from pure bundling for positive belt: 𝛱𝑃𝐵𝑎+ is given by: 

𝛱𝑃𝐵𝑎+(𝑝) =

{
 
 
 

 
 
 (𝑝 − 𝑐𝑏) (1 −

1

2𝑎𝑥
𝑝2)                                                     0 ≤ 𝑝 ≤ 𝑎

{
(𝑝 − 𝑐𝑏) (1 −

1

2𝑎𝑥
𝑎𝑝)                                           𝑎 < 𝑝 ≤ 2𝑥 − 𝑎

(𝑝 − 𝑐𝑏) (
1

2𝑎𝑥
(2𝑥 − 𝑝)2)                                   2𝑥 − 𝑎 < 𝑝 ≤ 2𝑥

   

0                                                                                                   𝑝 > 2𝑥

 

𝑥 

−𝑎

𝑦 

𝑥 

−𝑎

𝑥 

(
𝒑 − 𝒂

𝟐
,
𝒑 + 𝒂

𝟐
) 

(
𝒑 + 𝒂

𝟐
,
𝒑 − 𝒂

𝟐
) 

(𝒑 − 𝒙, 𝒙) 
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Analytical optimization for positive correlation case is more lengthy and hence will be avoided 

here.8 Instead we show graphically how optimal profits from both strategies behave in response 

to changes in degree of correlation and level of marginal costs. In Figure 12 we draw profit 

function 𝛱𝑃𝐵𝑎+ for 𝑥 = 10, 𝑐𝑏 = 0 and different values of parameter 𝑎 ∈ (0,10). As can be 

seen from there, monopolist maximizes profit from pure bundling always on the linear (least 

elastic) segment of demand curve. The optimal profit takes the highest value for 𝑎 = 𝑥 = 10 

(independence) and then for 𝑎 < 8 becomes irresponsive to correlation of reservation prices. 

In case of positive correlation our model predicts that  pure bundling can hardly generate higher 

profits. Even for moderate levels of correlation pure components yield equal profit as pure 

bundling.  

Figure 12. Profit function under PB, 𝜫𝑷𝑩𝒂+ for 𝐱 = 𝟏𝟎, 𝒄𝒃 = 𝟎 and 𝐚 ∈ (𝟎, 𝟏𝟎) . 

 

Figure 13 which compares performance of pure components and pure bundling using iso-

difference curves of optimal profits (𝛱𝑃𝐵 − 𝛱𝑃𝐶) graphed in correlation-cost space. Full 

independence case is marked in the middle of the graph. Left part of the Figure 13 confirms 

what has been already noted in the previous subsection for negative correlation case. Now we 

focus attention on the right part which represents positive belt: 𝑓𝑎+ with 𝑐𝑜𝑟𝑟 ∈ (0,1]. The zero 

difference curve marks correlation-cost combinations which yield equal profit from pure 

bundling and pure components. Red isocurves mark the area where pure bundling is profit-

                                                 

8 Note that depending on the value of correlation monopolist will optimize profits on the first or on the second segment of the 

demand curve. The intuition behind this observation is that for sufficiently low correlation the width of the belt get large enough 

and monopolist will choose to set lower price sell to more customers including those from more dense lower triangular area. 

However if the belt becomes narrower (or the costs increase) the seller will rise price of the bundle and move to the linear 

segment, where optimal price does not depend on correlation (see Figure 12). 
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inferior to pure components and the green ones mark the space where pure bundling yields 

greater profits. For sufficiently positive correlation (approximately 𝜌 > 0.2) pure bundling is 

indeed never better from separate sales and more importantly becomes strictly worse for 

sufficiently high marginal costs. Intuition which stands behind this result is the following: With 

growing correlation the positive belt shrinks in width implying that individual demands become 

more and more homogeneous. As a result monopolist stops benefitting from the package, 

because of limited possibility to reduce heterogeneity of consumer demands. On the other hand 

if marginal costs are large enough, monopolist using pure bundling engages in implicit 

subsidization of consumers. Pure components can avoid this problem while reaching effectively 

the same people from the profitable central segment of pure bundling demand curve. This 

explains why this strategy outperforms pure bundling.9  

Figure 13. Iso-difference curves for optimal profits from PB and PC strategies in correlation-cost space.  

 

1.3. MIXED BUNDLING  

                                                 

9 In a perfect correlation case there is no subsidization at all, hence both strategies converge in profits for in the whole range of 

marginal costs 
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Unlike pure bundling, analytical derivation of demand and profit functions under 𝑓𝑎 density is 

complicated due to large number of cases which need to be considered for the three price 

parameters. For this reason we switch to simulation techniques to obtain a complete picture.10 

We use the following algorithm. First we generate a fixed sample of  𝑘 = 10000 customers 

with uniformly distributed reservation prices: 𝑟~𝑈[0,10] for each good according to the joint 

density 𝑓𝑎. Then for each variant of width parameter 𝑎 ∈ [−10,10] and marginal cost 𝑐 ∈

[0,20] both taken with a step 1 we find optimal prices under MB and PB. We take a smaller 

search step for price (0.1) to ensure sufficient level of precision – at the expense of considerable 

computation burden. For mixed bundling our algorithm checks 100x100x200 price 

combinations for each of 21x21 a,c variants in the sample of 10000 customers. We did 

robustness checks with regards to alternative parameters of simulation and are confident with 

the precision and reliability of results obtained for this set of parameters. In what follows we 

present the profit performance of mixed bundling against pure bundling and pure components 

in relative terms (see Figure14 ) as well as compare simulated optimal prices with the use of 

iso-difference curves (in Figure 15).  

Figure 14 indicates mixed bundling weakly dominates both separate sales and pure bundling 

with respect to profit levels. This result is expected because MB contains in itself the remaining 

two pricing instruments. Hence with mixed bundling monopolist can always replicate any PC 

or PB strategy if it is optimal. What is remarkable and striking about Figure 14 is that mixed 

bundling offers very small profit gains as shown in relative terms in the left panel. Only in the 

bottom-left segment of the correlation-cost space advantage of mixed bundling can be 

considered attractive from managerial perspective.11 This segment marks either (i) a 

combination of high to medium negative correlation (between -1 and -0,5) and medium to low 

levels of marginal cost (between 50% and 25% of a mean bundle valuation) or (ii) a 

combination of medium to low negative correlation and costs close to zero (less than 25% of a 

mean bundle valuation). For close to independent or positively correlated reservation prices the 

profit gains from mixed bundling are close to zero regardless of the level of costs. The same is 

true for  cost exceeding 50% of a mean valuation, regardless of degree of correlation 

                                                 

10 Simulations have been done in R. The code is available on request from the authors under CC-BY 4.0 license.  
11 There is always a problem about what magnitude of gains is attractive. We acknowledge that there is no single answer to this 

question. The answer depends differs across industries and depends on the magnitude of additional fixed and variable costs 

resulting from implementation of bundling strategy. Therefore we have arbitrarily set the threshold for attractive gains at rather 

modest 10% level relative to operating surplus from pure components. 
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components valuations. Comparing optimal prices in mixed bundling and pure components  

which explains why the gains from mixed bundling diminish so rapidly. 

Figure 14. Simulated isocurves for the relative difference in optimal profits in correlation-cost space. Left 

panel presents (𝜫𝑴𝑩 −𝜫𝑷𝑪)/𝜫𝑷𝑪, right panel presents (𝜫𝑴𝑩 −𝜫𝑷𝑩)/ 𝜫𝑷𝑩. 

 

 

This insight is provided in Figure 15, which shows the magnitude of discount for buying a 

bundle offered by mixed bundling strategy  (left panel) and also compares the sum of individual 

prices under mixed bundling and pure components (right panel).  

 

Figure 15. Simulated isocurves for the relative difference in optimal prices in correlation-cost space. Left 

panel presents (𝒑𝒃
𝑴𝑩 − 𝒑𝟏

𝑴𝑩 − 𝒑𝟐
𝑴𝑩)/(𝒑𝟏

𝑴𝑩 + 𝒑𝟐
𝑴𝑩), right panel presents (𝒑𝟏

𝑴𝑩 + 𝒑𝟐
𝑴𝑩 − 𝒑𝟏

𝑷𝑪 − 𝒑𝟐
𝑷𝑪)/(𝒑𝟏

𝑷𝑪 +

𝒑𝟐
𝑷𝑪),  

 

Two interesting observations follow from Figure 15. First, in the segment of greatest relatives 

gains mixed bundling works through a classical pattern, namely a combination of higher prices 

for component products relative to pure components and considerable discount on price for the 
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bundle. In this way mixed bundling can capture greater portion of a surplus from those 

customers who have largely heterogeneous valuations and at the same time realize profits from 

those customers who have moderate valuations for both goods. Second, if cost are sufficiently 

high or correlation coefficient is largely positive mixed bundling converges in prices to pure 

components.12 Although in both cases convergence effectively drives profit gains from mixed 

bundling to zero it is governed by two distinct mechanisms. Under growing costs, selling a 

bundle at a discounted price will require implicit subsidization and monopolist will gradually 

increase price for a bundle relative to component prices. Eventually mixed bundling will 

converge to pure components and monopolist will stop selling bundles at all. Interestingly this 

result holds even for large negative correlation of reservation prices stressing a critical role of 

costs in solving bundling problem. For example, for  𝜌 → −1 all consumer will value package 

for 10, so if costs exceed this level, monopolist starts to generate loss from selling package. On 

the other hand under large positive correlation there are limited possibilities for reducing 

demand heterogeneity and hence the gains from selling bundle become very limited. Although 

monopolist can still earn extra profit from mixed bundling by extracting little bit more surplus 

from the most divergent customers at the expense of lower revenues from those buying a 

bundle, eventually for perfect positive correlation mixed bundling converges in prices to pure 

components.  

We note two more things about mixed bundling from Figure 15. First, the zero difference 

isocurve in prices shown in the left panel indicates that monopolist will choose the same levels 

of individuals prices under pure components and mixed bundling. However, naturally those 

prices will rise with costs as indicated by optimal prices formula for pure bundling (see Section 

3.1). Second, for 𝜌 > 0 the threshold level of costs for which gains from mixed bundling are 

zero increases with degree of correlation. This happens because with growing 𝜌 some customers 

are willing to pay high price for the bundle and monopolist will be able to make positive (albeit 

small) profit thanks to discriminatory power of mixed bundling strategy.  

Taken as whole our results indicate that in our model mixed bundling can rise profits maximum 

by 70% compared to pure components and 11% compared to pure bundling. The distribution 

of gains in correlation-cost space reveals that the sufficient gains from mixed bundling can be 

realized only under specific combination of both very low marginal costs and relatively high 

negative correlation of valuations. In all other cases the gains from mixed bundling are 

                                                 

12 We use the term convergence intuitively, meaning that individual prices are the same and a discount for buying a package is 

zero,  which makes price for the bundle ineffective. 
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negligible, undermining rationale for implementation of this strategy. Our model reveals also 

the critical role of costs for bundling problem. This is best seen for large negative correlation, 

where profit gains from bundling are the most sensitive to cost increases because of the largest 

reduction in demand heterogeneity. We believe that both conclusions from our linear model are 

interesting from managerial perspective as they indicate that bundling will better enough to 

justify its implementation only for low cost services and only under specific pattern of 

component demands dependency.  

SUMMARY AND CONCLUSIONS  

In this paper we look at the magnitude of profit gains from mixed bundling. We introduce 

a model of reservation price space which yields linear market demands for both component 

goods. Our analysis of bundling gains is carried out for the whole possible range of marginal 

costs and degree of correlation of valuations of bundle components. Our results in principle 

show that bundling can generate sufficient gains only in low marginal cost industries provided 

that demands are sufficiently negatively correlated. In this way our results conform with 

practical observations that bundling is applicable mainly to ICT services or more broadly to 

information goods.13 

Our study contributes to the bundling problem in two ways. First, we focus on profit gains 

rather than simply on profit dominance. We believe that this perspective is more insightful from 

managerial perspective. We argue that weakly dominance result has no practical importance for 

managers, as it does not tell under which conditions mixed bundling can be expected to strictly 

outperform the two remaining sales formats and by how much. Our perspective requires shifting 

from local improvement considerations towards global optimum search. Secondly, we propose 

analytical framework that has some desired properties which enable us to carry out global 

analysis. More specifically, we introduce a joint reservation price space which on one hand 

preserves linearity of market demand for individual goods – a feature which often is assumed 

not only in theoretical models but serves as starting point in practical analyses. Our so called 

‘belt shaped’ density function allows to capture underlying correlation with a single parameter 

and yields analytically tractable demand and profit functions under pure bundling strategy. 

Approaches that have been explored so far in normative bundling literature, like uniform and 

                                                 

13 Fixed line services typically meet both criteria. Marginal costs of broadband and telephony are close to zero and market 

demand is segmented in a way which ensures negative correlation. Younger consumers do not value fixed line telephony as 

they use IP or mobile telephony. On the other hand older customers are not interested in broadband but are attached to traditional 

telephony service. 
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Gaussian densities of customer valuations, miss one or the other element. Our model of 

reservation price space encompasses several situations so far analyzed in literature as special 

cases, like perfect correlation or full independence of valuations. 

Two results follow from our study. First, mixed bundling is weakly dominant in payoff over 

pure bundling and pure components for all levels of marginal costs and any degree of 

correlation of consumers’ reservation prices. This common sense result is just a confirmation 

of earlier findings. More importantly, we show that benefits from implementation of mixed 

bundling strategy vary significantly and are negligible for the wide range of correlation-cost 

combinations, as appears in our model. We assess bundling gains with arbitrary assumption 

that 10% markup over profits from pure components is sufficient to cover its implementation. 

The fact that mixed bundling rarely exceeds this rather modest threshold is the most astonishing 

finding from our study.  

Generally our results point to the critical role of marginal costs for the optimality of bundling. 

Earlier bundling literature has argued that under strong negative correlation bundling reduces 

demand heterogeneity and makes market demand less elastic. We show that with growing 

marginal costs pure bundling sooner starts to generate losses because of  homogeneity of 

bundling valuations. 

Our results are not encouraging for implementation of bundling. Sufficient profit gains from 

mixed bundling can be expected only under specific combination of both very low marginal 

costs and relatively high negative correlation of valuations. Given that usually firms have 

limited knowledge about dependency of individual demands, they might choose prefer to use a 

safer pure components strategy to avoid risk of uncontrolled subsidization of its customers. 

Moreover, with incomplete information about the demand it might be difficult to find optimal 

vector of mixed bundling prices.  

Our model is limited and could be extended several ways. By construction our ‘belt-shaped’ 

reservation price space corresponds to market with two distinct segments (marked by triangular 

areas with double density) and also a mass of consumers in between. One can try to use mixtures 

of bivariate distributions to cover demand structures, which are closer to reality. Four segments 

of consumers with divergent and convergent valuations for both goods would be an interesting 

case to study. Another limitations of current study is that we have focused solely on profit gains 

and do not consider welfare changes. Our analysis is also restricted to the usual simplifying 

assumptions adopted in bundling models such as additivity of reservation prices and unit costs. 
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Relaxing each of them would bring more in depth insights about potential of bundling in real 

market applications. 
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APPENDIX  
Proof of Proposition 2a. 

First, we check that function f a−has properties of the reservation prices density function requested in  Definition 

1: 

1. Domf = [0, x] × [0, x] ⊂ ℝ
2
, where x > 0, 

2. Ranf ⊂ ℝ and f a−(x, y) ≥ 0 for all (x, y) in [0, x] × [0, x], 

3. ∬ f(x, y)dydx
 

[0,x]×[0,x]
 can be calculated in the following way: 

= ∫dx ∫ f a−(x, y)dy

x+(x−a)

−x+(x−a)

a

0

+∫dx ∫ f a−(x, y)dy +

x

x+(x−a)

a

0

 

http://www.acooke.org/random.pdf
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+∫ dx ∫ f a−(x, y)dy

−x+(x+a)

−x+(x−a)

x−a

a

+ ∫ dx ∫ f a−(x, y)dy

x−(x−a)

0

+

x

x−a

 

+ ∫ dx ∫ f a−(x, y)

−x+(x+a)

x−(x−a)

dy

x

x−a

= 1. 

Since f a−is indeed a proper density function we calculate marginal densities. The reservation prices density 

function of good 𝕏:  fx
a− is given by: 

⋀ fx
a−(x) = ∫ f a−(x, y)dy

x+(x−a)

−x+(x−a)

+ ∫ f a−(x, y)dy =
1

x

x

x+(x−a)0≤x≤a

  

⋀ fx
a−(x) = ∫ f a−(x, y)dy

−x+(x+a)

−x+(x−a)

=
1

x
a<x≤x−a

                                           

⋀ fx
a−(x) = ∫ f a−(x, y)dy

x−(x−a)

0

+ ∫ f a−(x, y)

−x+(x+a)

x−(x−a)

dy =
1

x
x−a<x≤x

. 

The reservation prices density function of good 𝕐:  fy
a− is given by:  

⋀ fy
a−(y) = ∫ f a−(x, y)dx

y+(x−a)

−y+(x−a)

+ ∫ f a−(x, y)dx =
1

x

x

y+(x−a)0≤y≤a

  

⋀ fy
a−(y) = ∫ f a−(x, y)dx

−y+(x+a)

−y+(x−a)

=
1

x
a<y≤x−a

 

⋀ fy
a−(y) = ∫ f a−(x, y)dx

y−(x−a)

0

+ ∫ f a−(x, y)

−y+(x+a)

y−(x−a)

dy =
1

x
 

x−a<y≤x

. 

Thus both marginal densities:  fx
a− and :  fy

a−are uniform for 𝑎 ∈ (0,
𝑥

2
].  

Q.E.D 

Proof of Proposition 3a. 

For the case of only two random variables X, Y generic formula for correlation writes: 

ρ(X, Y) =
COV(X, Y)

VAR(X) ∙ VAR(Y)
=
E(XY) − E(X) ∙ E(Y)

VAR(X) ∙ VAR(Y)
                 (1a) 

where the nominator of (1a) stands for covariance between variables and denominator denotes a product of their 

variances. Because fx
a−(x) =

1

x
  for  x ∈ [0, x ] 

E(X) = E(Y) =
x

2
 and  VAR(X) = VAR(Y) =

x
2

12
 

So it remains to calculate E(XY) which by definition is 

E(XY) = ∬ xyf a−(x, y) dxdy

 

(x,y)∈Domfa−

           (2a) 

To conduct this integration we divided Domf a− for a ∈ (0,
x

2
] as shown in Fig. A.1. 
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Figure A.1. Graph of the subsets of Domf a− for a ∈ (0,
x

2
]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Where: 

S1 = {(x, y) ∈ Domf a−|0 ≤ x ≤ a and x + (x − a) ≤ y ≤ x} 

S2 = {(x, y) ∈ Domf a−|0 ≤ x ≤ a and − x + (x − a) ≤ y < x + (x − a)} 

S3 = {(x, y) ∈ Domf a−|a < x ≤ x − a and − x + (x − a) ≤ y ≤ −x + (x + a)} 

S4 = {(x, y) ∈ Domf a−|x − a < x ≤ x and x − (x − a) < y ≤ −x + (x + a)} 

S5 = {(x, y) ∈ Domf a−|x − a < x ≤ x and 0 ≤ y ≤ x − (x − a)} 

 

Expected value in (2a) is the sum of five integrals  

E(XY) =∑[ ∫ x( ∫ yf a−(x, y) dy

 

y∈Si

)

 

x∈Si

dx]

5

i=1

 

which can be easily evaluated for each Si: 

For i = 1 

∫x( ∫ y
1

ax
 dy

x

x+(x−a)

)

a

0

dx =
a2(4x − a)

24x
 

For i = 2 

∫ x( ∫ y
1

2ax
 dy

x+(x−a)

−x+(x−a)

)

a

x=0

dx =
a2(x − a)

3x
 

For i = 3 

𝑎 

−𝑎

𝑎 

−𝑎

𝑥 

−𝑎

𝑥 𝑥 − 𝑎 

−𝑎

𝑥 

−𝑎

𝑦 

𝑥 − 𝑎 

−𝑎

𝑺𝟑 

−𝑎

𝑺𝟐 

−𝑎

𝑺𝟒 

−𝑎

𝑺𝟏 

−𝑎

𝑺𝟓 

−𝑎
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∫ x( ∫ y
1

2ax
 dy

−x+(x+a)

−x+(x−a)

)

x−a

a

dx =
4a3 − 6a2x + x

3

6x
 

For i = 4 

∫ x( ∫ y
1

2ax
 dy

−x+(x+a)

x−(x−a)

)

x

x−a

dx =
a2(3x − 2a)

6x
 

For i = 5 

∫ x( ∫ y
1

ax
 dy

x−(x−a)

0

)

R

x−a

dx =
a2(4x − a)

24x
 

Finally, given  E(XY) = −
a3−2a2x−2x

3

12x
 we obtain correlation coefficient as in formula (10) Q.E.D.  


