

Models of unemployment

Advanced Macroeconomics IE: Lecture 17

Marcin Bielecki Spring 2021

University of Warsaw

RBC model vs data comparison

		Std. Dev.		Corr. w. y		Autocorr.	
		Data	Model	Data	Model	Data	Model
Output	y	1.60	1.60	1.00	1.00	0.85	0.72
Consumption	c	0.86	0.57	0.76	0.92	0.83	0.80
Investment	i	4.54	5.14	0.79	0.99	0.87	0.71
Capital	k	0.57	0.46	0.36	0.08	0.97	0.96
Hours	h	1.60	0.73	0.81	0.98	0.90	0.71
Wage	w	0.84	0.73	0.10	0.99	0.65	0.75
TFP	z	1.00	1.15	0.67	1.00	0.71	0.72
Productivity	$\frac{y}{h}$	1.30	0.95	0.51	0.99	0.65	0.75

RBC model vs data comparison

- Model performance is quite good
 - it was a big surprise in the 1980s!
- There are some problems with it though
 - In the data, hours are slightly more volatile than output
 - In the model, hours are less than half as volatile as output
 - In the data, real wage can be either pro- or countercyclical
 - In the model, real wage is strongly procyclical
 - In the data TFP and productivity are mildly correlated with output
 - In the model both are 1:1 correlated with output
- Those results suggest that
 - · Need some room for nominal variables
 - · More shocks than just TFP are needed
 - · We need to focus more on labor market
 - should improve behavior of hours and real wage

Indivisible labor: introduction

Most of the variation in hours worked is on the *extensive* margin (employment-unemployment) rather than on the *intensive* margin (hours worked by individual employees)

Indivisible labor: introduction

Most of the variation in hours worked is on the *extensive* margin (employment-unemployment) rather than on the *intensive* margin (hours worked by individual employees)

$$H_t = L_t h_t$$
 $extsf{Var} (\ln H) = extsf{Var} (\ln L) + extsf{Var} (\ln h) + 2 \cdot extsf{Cov} (\ln L, \ln h)$

Variance-covariance matrix of Hodrick-Prescott deviations

	H	L	h
Total hours H	3.48		
Employment ${\it L}$		2.43	0.40
Hours per employee h		0.40	0.25

About 70% of variance of total hours worked is accounted for by variance of employment level and only 7% is accounted for by variance of hours worked by individual employees (the rest is accounted for by covariance)

Indivisible labor: setup

- "Realistic" hours worked variation results from a two-step process:
 - Decision between working and not working
 - Conditional on working, how much to work
- For simplicity we will focus on the first step only
- Hansen (1985, JME) and Rogerson (1988, JME) invented a clever technical solution
- In the RBC model households choose how much to work
- Here they will choose the probability p of working \bar{h} hours:
 - All workers are identical and can work for either 0 hours or a fixed number of hours \bar{h}
 - Each worker is a part of big family and consumes the same amount regardless of working or not
 - All workers will choose the same probability of working \boldsymbol{p}

Households' problem

Consider first a single-period problem:

$$\max \quad U = \ln c + \mathrm{E} \left[\phi \ln (1 - h) | p \right]$$

Expand the expected term:

$$E[\phi \ln (1-h) | p] = p\phi \ln (1-\bar{h}) + (1-p)\phi \ln (1-0) = p\phi \ln (1-\bar{h})$$

Since all workers choose the same p, the average number of hours per worker household h is equal to probability p times working hours per employed \bar{h} :

$$h=p\bar{h} \quad \to \quad p=h/\bar{h}$$

Going back to the expected term:

$$E[\phi \ln (1-h)|p] = p\phi \ln (1-\bar{h}) = h \frac{\phi \ln (1-\bar{h})}{\bar{h}} \equiv -Bh$$

where $B=-\phi \ln(1-\bar{h})/\bar{h}>0$. Utility becomes linear in h!

6

Households' solution I

Households solve the expected utility maximization problem:

$$\max \quad U_t = \mathrm{E}_t \left[\sum_{i=0}^\infty \beta^i \left(\ln c_{t+i} - B h_{t+i} \right) \right]$$
 subject to
$$a_{t+1} + c_t = (1+r_t) \, a_t + w_t h_t + d_t$$

Lagrangian:

$$\mathcal{L} = \sum_{i=0}^{\infty} \beta^{i} E_{t} \begin{bmatrix} \ln c_{t+i} - Bh_{t+i} \\ +\lambda_{t+i} \left[(1 + r_{t+i}) a_{t+i} + w_{t+i} h_{t+i} + d_{t} - a_{t+1+i} - c_{t+i} \right] \end{bmatrix}$$

First order conditions:

$$c_{t} : \frac{1}{c_{t}} - \lambda_{t} = 0 \qquad \rightarrow \quad \lambda_{t} = \frac{1}{c_{t}}$$

$$h_{t} : -B + \lambda_{t} w_{t} = 0 \qquad \rightarrow \quad \lambda_{t} = \frac{B}{w_{t}}$$

$$a_{t+1} : -\lambda_{t} + \beta E_{t} \left[\lambda_{t+1} \left(1 + r_{t+1} \right) \right] = 0$$

$$\hookrightarrow \quad \lambda_{t} = \beta E_{t} \left[\lambda_{t+1} \left(1 + r_{t+1} \right) \right]$$

7

Households' solution II

First order conditions:

$$\begin{aligned} c_t & : & \lambda_t = \frac{1}{c_t} \\ h_t & : & \lambda_t = \frac{B}{w_t} \\ a_{t+1} & : & \lambda_t = \beta \mathbf{E}_t \left[\lambda_{t+1} \left(1 + r_{t+1} \right) \right] \end{aligned}$$

Resulting in:

 $\begin{array}{ll} \text{Intertemporal condition } (c+a) & : & \frac{1}{c_t} = \beta \mathbf{E}_t \left[\frac{1}{c_{t+1}} \left(1 + r_{t+1} \right) \right] \\ \text{Intratemporal condition } (c+h) & : & c_t = Bw_t \end{array}$

8

Full set of equilibrium conditions

System of 8 equations and 8 unknowns: $\{c,h,y,r,w,k,i,z\}$

Euler equation : $1/c_t = \beta E_t [(1/c_{t+1}) (1 + r_{t+1})]$

Consumption-hours choice : $c_t = Bw_t$

Production function : $y_t = z_t k_t^{\alpha} h_t^{1-\alpha}$

Real interest rate : $r_t = \alpha z_t k_t^{\alpha-1} h_t^{1-\alpha} - \delta$

Real hourly wage : $w_t = (1 - \alpha) y_t / h_t$

Investment : $i_t = k_{t+1} - (1 - \delta) k_t$

Output accounting : $y_t = c_t + i_t$

TFP AR(1) process : $\ln z_t = \rho_z \ln z_{t-1} + \varepsilon_t$

Steady state - closed form solution

Start with the Euler equation:

$$\frac{1}{c_t} = \beta E_t \left[\frac{1}{c_{t+1}} \left(1 + r_{t+1} \right) \right] \quad \rightarrow \quad 1 = \beta \left(1 + r \right) \quad \rightarrow \quad r = \frac{1}{\beta} - 1$$

From the interest rate equation obtain the k/h ratio:

$$r = \alpha k^{\alpha - 1} h^{1 - \alpha} - \delta \quad \rightarrow \quad \left(\frac{k}{h}\right)^{\alpha - 1} = \frac{r + \delta}{\alpha} \quad \rightarrow \quad \frac{k}{h} = \left(\frac{\alpha}{r + \delta}\right)^{\frac{1}{1 - \alpha}}$$

From the production function obtain the y/h ratio and then wage:

$$y = k^{\alpha} h^{1-\alpha} \quad o \quad \frac{y}{h} = \left(\frac{k}{h}\right)^{\alpha} \quad \text{and} \quad w = (1-\alpha) \frac{y}{h}$$

From investment and output accounting eqns. obtain the c/h ratio:

$$i = \delta k \quad \rightarrow \quad y = c + \delta k \quad \rightarrow \quad \frac{c}{h} = \frac{y}{h} - \delta \frac{k}{h}$$

Get c from the consumption-hours choice. Then obtain h:

$$c = Bw \rightarrow h = \frac{c}{c/h}$$

Parameters

- To best compare our two models, we need them to generate identical steady states
- We replace parameter ϕ with parameter B
- We choose the value for B so that it matches h=1/3
- For this model B=2.63

Model comparison: impulse response functions

RBC model IRF: black solid lines

Indivisible labor IRF: red dashed lines

Percentage deviations from steady state (percentage points for r)

Model comparison: moments

	Std. Dev.			Corr. w. y			Autocorr.		
	Data	RBC	Ind	Data	RBC	Ind	Data	RBC	Ind
\overline{y}	1.60	1.60	1.60	1.00	1.00	1.00	0.85	0.72	0.72
c	0.86	0.57	0.57	0.76	0.92	0.92	0.83	0.80	0.80
i	4.54	5.14	5.28	0.79	0.99	0.99	0.87	0.71	0.71
k	0.57	0.46	0.46	0.36	0.08	0.08	0.97	0.96	0.96
h	1.60	0.73	1.13	0.81	0.98	0.98	0.90	0.71	0.71
w	0.84	0.73	0.57	0.10	0.99	0.92	0.65	0.75	0.80
z	1.00	1.15	0.88	0.67	1.00	1.00	0.71	0.72	0.72
$\frac{y}{h}$	1.30	0.95	0.57	0.51	0.99	0.92	0.65	0.75	0.80

Model comparison: model-generated hours worked

Indivisible labor: summary

- Model enhances hours volatility (but it's still too low)
- · Improves correlation of wages and productivity with output
- Slightly decreases empirical match in other dimensions
- Technical advantage: requires smaller TFP shocks
- Philosophical advantage: more "realistic" labor market

Search and matching: introduction

- Labor markets are in a state of constant flux
- At the same time there are job-seeking workers and worker-seeking firms
- · Labor markets are decentralized and active search is needed
- Search friction leads to unemployment even in the steady state
- Peter Diamond, Dale Mortensen and Christopher Pissarides were awarded the Nobel Prize in 2010 for developing this model

Labor market status and flows: EU 2019Q3

Transitions in labour market status in the EU, Q2 2019 - Q3 2019 (population aged 15-74; in millions)

Labor market status change probabilities: EU 2019Q3

Source: Eurostat

Unemployment and vacancy rates: USA 1948-2019

Labor market fluctuations: USA 1950-2019

Matching function

- Firms create open job positions (openings, vacancies)
- Workers search for jobs
- Both jobs and workers are heterogeneous

 → not every possible match is attractive
- Matching function captures this feature
- New matches M are a function of the pool of unemployed U
 and pool of vacancies V:

$$M_t = M(V_t, U_t) = \chi V_t^{\eta} U_t^{1-\eta}$$

where $\chi > 0$ and $\eta \in (0,1)$

Job finding and job filling probabilities

Unemployed workers are interested in job finding probability p:

$$p_t = \frac{M_t}{U_t} = \chi \left(\frac{V_t}{U_t}\right)^{\eta} = \chi \theta_t^{\eta} = q_t \theta_t$$

where $\theta = V/U$ is called labor market tightness

Firms with vacancies care about job filling probability q:

$$q_t = \frac{M_t}{V_t} = \chi \left(\frac{V_t}{U_t}\right)^{\eta - 1} = \chi \theta_t^{\eta - 1} = \frac{p_t}{\theta_t}$$

- Dual externality from congestion:
 - ullet High number of unemployed decreases p and increases q
 - ullet High number of vacancies increases p and decreases q

Employment dynamics

 Ignoring labor market inactivity, employment rate n and unemployment rate u sum to unity:

$$n_t + u_t = 1 \quad \rightarrow \quad n_t = 1 - u_t$$

- ullet Existing matches are destroyed with exogenous probability s
- New matches increase next period employment:

$$n_t = n_{t-1} - sn_{t-1} + m_{t-1}$$
$$u_t = u_{t-1} + sn_{t-1} - m_{t-1}$$

 We can find the steady state unemployment rate as a function of separation and job finding probabilities:

$$u = u + s(1 - u) - p(\theta) u$$
$$u = \frac{s}{s + p(\theta)}$$

 This generates a Beveridge curve: a negative relationship between the unemployment and vacancy rates

Beveridge curve: theory

oraph by Leszek Willeenelah

Beveridge curve: data

Beveridge curve: data

Detrending with Hodrick-Prescott filter takes out structural shifts

Beveridge curve: "estimation"

Firm side

- Assume firms and workers discount future with β
- Period net gain from a filled job equals marginal product of employee mpn less wage w
- Existing matches are destroyed with probability s:

$$\mathcal{J}_t = (mpn_t - w_t) + \beta E_t [(1 - s) \mathcal{J}_{t+1} + s \mathcal{V}_{t+1}]$$

- Period net loss from open vacancy is its cost κ
- With probability q the vacancy will be filled:

$$\mathcal{V}_{t} = -\kappa + \beta E_{t} \left[q_{t} \mathcal{J}_{t+1} + (1 - q_{t}) \mathcal{V}_{t+1} \right]$$

- Free entry in vacancies ensures that always $\mathcal{V}=0$
- In the steady state ($r = 1/\beta 1$):

$$mpn - w = (r + s) \kappa/q(\theta)$$

Worker side

- ullet Period net gain from employment equals wage w
- Existing matches are destroyed with probability s:

$$\mathcal{E}_t = w_t + \beta E_t \left[(1 - s) \mathcal{E}_{t+1} + s \mathcal{U}_{t+1} \right]$$

- Period net gain from unemployment equals benefits (and possibly utility from leisure) b
- With probability p an unemployed person finds a job:

$$\mathcal{U}_t = b + \beta E_t \left[p_t \mathcal{E}_{t+1} + (1 - p_t) \mathcal{U}_{t+1} \right]$$

Wage setting

- The negotiated wage can be anywhere between the gain from unemployment b and the marginal product of employee mpn plus match gain $\kappa\theta$
- Nash bargaining allows to model the outcome of negotiations
- Let $\gamma \in [0,1]$ denote the relative bargaining power of firms
- The negotiated wage is the solution of the problem:

$$\max_{w_t} \left[\mathcal{J}_t \left(w_t \right) \right]^{\gamma} \left[\mathcal{E}_t \left(w_t \right) - \mathcal{U}_t \right]^{1 - \gamma}$$

• Solving the problem results in:

derivation

$$w_t = \gamma b + (1 - \gamma) \left(mpn_t + \kappa \theta_t \right)$$

• Intuitively: $w \to b \text{ if } \gamma \to 1 \text{ and } w \to mpn + \kappa \theta \text{ if } \gamma \to 0$

Full set of equilibrium conditions

System of 9 equations and 9 unknowns: $\{w, mpn, \theta, \mathcal{J}, q, u, n, m, v\}$

$$w_{t} = \gamma b + (1 - \gamma) \left(mpn_{t} + \kappa \theta_{t} \right)$$

$$\mathcal{J}_{t} = \left(mpn_{t} - w_{t} \right) + (1 - s) \cdot \beta \mathcal{E}_{t} \left[\mathcal{J}_{t+1} \right]$$

$$\kappa = q_{t} \cdot \beta \mathcal{E}_{t} \left[\mathcal{J}_{t+1} \right]$$

$$u_{t} = 1 - n_{t}$$

$$n_{t} = (1 - s) n_{t-1} + m_{t-1}$$

$$q_{t} = \chi \theta_{t}^{\eta - 1}$$

$$\theta_{t} = v_{t} / u_{t}$$

$$m_{t} = \chi v_{t}^{\eta} u_{t}^{1 - \eta}$$

$$mpn_{t} = (1 - \rho) + \rho \cdot mpn_{t-1} + \varepsilon_{t}$$

Steady state: key equations

In the steady state the model is fully summarized by the following three key equations:

Beveridge curve (BC) :
$$u = \frac{s}{s + p(\theta)}$$

$$\mbox{Job (vacancy) creation (JC)} \quad : \quad w = mpn - (r+s) \, \frac{\kappa}{q \, (\theta)} \label{eq:continuous}$$

Wage setting (W) :
$$w = \gamma b + (1 - \gamma) \left(mpn + \kappa \theta \right)$$

Steady state: graphical solution

Comparative statics I

Effects of an increase in unemployment benefits $(b \uparrow)$ or in workers' bargaining power $(\gamma \downarrow)$:

- Increase in real wage w
- Decrease in labor market tightness θ
- Decrease in vacancy rate v
- Increase in unemployment rate u

Graph by Leszek Wincenciak

Comparative statics II

Effects of an increase in separation rate ($s \uparrow$) or a decrease in matching efficiency ($\chi \downarrow$):

- Decrease in real wage \boldsymbol{w}
- Decrease in labor market tightness θ
- Ambiguous effect on vacancy rate v
- Increase in unemployment rate u

Graph by Leszek Wincenciak

Comparative statics III

Effects of an increase in interest rate $(r \uparrow)$ or an increase in impatience $(\rho \uparrow \rightarrow \beta \downarrow)$:

- Decrease in real wage \boldsymbol{w}
- Decrease in labor market tightness θ
- Decrease in vacancy rate v
- Increase in unemployment rate u

Graph by Matthias Hertweck

Comparative statics IV

Effects of an increase in labor productivity ($mpn \uparrow$):

- Increase in real wage w
- Increase in labor market tightness θ
- Increase in vacancy rate v
- ullet Decrease in unemployment rate u

Graph by Matthias Hertweck

Transitional dynamics

Reduced form of the model (with mpn treated as exogenous):

$$\dot{u} = s (1 - u) - \chi \theta^{\eta} \cdot u$$

$$\dot{\theta} = \frac{\theta}{1 - \eta} \left[(r + s) - \gamma (mpn - b) \frac{\chi \theta^{\eta - 1}}{\kappa} + (1 - \gamma) \chi \theta^{\eta} \right]$$

The dynamic equation for θ is independent of u: $\dot{\theta}=0$ is a flat line in the (u,θ) space

Transitional dynamics: phase diagram

Transitional dynamics: positive productivity shock

Graph by Matthias Hertweck

Parameters

Values come from Shimer (2005, AER)

	Description	Value
$\overline{\chi}$	matching efficiency	0.45
η	matching elasticity of \emph{v}	0.28
s	separation probability	0.033
β	discount factor	0.99
mpn	steady state marginal product	1
κ	vacancy cost	0.21
b	unemployment benefit	0.4
γ	firm bargaining power	0.28

Implied steady state values

	Description	Value
u	unemployment rate	0.0687
v	vacancy rate	0.0674
m	new matches	0.031
θ	tightness	0.98
p	job finding probability	0.448
q	job filling probability	0.456
w	wage	0.98

Impulse response functions I

Impulse response functions II

Model generated Beveridge curve

Summary

- · We have a "realistic" model of the labor market
- Able to match both steady state (average) and some cyclical properties of the labor market
- Replicates the negative slope of the Beveridge curve
- · Not enough variation in employment
- · Beveridge curve too steep
- Too much variation in wages

Alternative parametrization

Values come from Hagedorn & Manovskii (2008, AER)

	Description	Value
$\overline{\eta}$	matching elasticity of \boldsymbol{v}	0.45
b	unemployment benefit	0.965
γ	firm bargaining power	0.928

- Firms have very strong bargaining position
- But unemployment gain includes leisure utility
- Steady state unchanged

Hagedorn & Manovskii: Impulse response functions

Hagedorn & Manovskii: Beveridge curve

Mortensen & Nagypal: Beveridge curve

Mortensen & Nagypal (2007) set $\eta=0.54$

Model BC replicates slope of the data BC:

Summary

- · Alternative parametrizations yield better results
- Both unemployment and employment become more volatile
- Volatility of wages is diminished
- Key problem for the search and matching model identified: period-by-period Nash bargaining
- Further extensions make alternative assumptions about the wage setting process

Integration with the RBC framework

- · Very easy
- ullet Get mpn from the usual firm problem
- Adjust β for $\beta \frac{\lambda_{t+1}}{\lambda_t}$ in the firm's valuation since the latter is the correct stochastic discounting factor
- · Solve for labor market variables
- · Get back to the RBC part
- Include vacancy costs in the national accounting equation:

$$y_t = c_t + i_t + \kappa v_t$$

Dynamics of vacancies

Fujita (2004): model IRF for vacancies is counterfactual

Alternative hiring cost function

We have assumed linear vacancy costs:

$$w_{t} = \gamma b + (1 - \gamma) \left(mpn_{t} + \kappa \theta_{t} \right)$$
$$\frac{\kappa}{q_{t}} = \beta E_{t} \left[mpn_{t+1} - w_{t+1} + (1 - s) \frac{\kappa}{q_{t+1}} \right]$$

• Gertler & Trigari (2009, JPE) assume convex costs:

$$x_t \equiv \frac{m_t}{n_t}$$

$$w_t = \gamma b + (1 - \gamma) \left(mpn_t + \frac{\kappa}{2} x_t^2 + p_t \kappa x_t \right)$$

$$\kappa x_t = \beta E_t \left[mpn_{t+1} - w_{t+1} + (1 - s) \kappa x_{t+1} + \frac{\kappa}{2} x_t^2 \right]$$

 They also consider multi-period wage contracts: within each period only a fraction of wage contracts are renegotiated

Gertler & Trigari: Impulse response functions

Monthly period frequency

Gertler & Trigari: Beveridge curve (flexible wages)

Gertler & Trigari: Beveridge curve (staggered wages)

Beveridge curve: data

Gertler & Trigari: business cycle statistics

	y	w	ls	n	u	v	θ	a	i	c
	A. U.S. Economy, 1964:1–2005:1									
Relative standard deviation	1.00	.52	.51	.60	5.15	6.30	11.28	.61	2.71	.41
Autocorrelation	.87	.91	.73	.94	.91	.91	.91	.79	.85	.87
Correlation with y	1.00	.56	20	.78	86	.91	.90	.71	.94	.81
B. Model Economy, $\lambda = 0$ (Flexible							e Wag	es)		
Relative standard deviation	1.00	.87	.09	.10	1.24	1.58	2.72	.93	3.11	.37
Autocorrelation	.81	.81	.58	.92	.92	.86	.90	.78	.80	.85
Correlation with y	1.00	1.00	54	.59	59	.98	.92	1.00	.99	.93
	C.	Model	Ecor	nomy,)	\ = 8 _/	/9 (3 Q	uarter	rs)		
Relative standard deviation	1.00	.56	.57	.35	4.44	5.81	9.84	.71	3.18	.35
Autocorrelation	.84	.95	.65	.90	.90	.82	.88	.76	.86	.86
Correlation with y	1.00	.66	56	.77	77	.91	.94	.97	.99	.90
		D. 1	Model]	Econo	оту, λ	= 11,	/12 (4	Quarte	ers)	
Relative standard deviation	1.00	.48	.58	.44	5.68	7.28	12.52	.64	3.18	.34
Autocorrelation	.85	.96	.68	.91	.91	.86	.90	.74	.88	.86
Correlation with y	1.00	.55	59	.78	78	.93	.95	.95	.99	.90

Summary

- After adding multi-period contracts, Gertler & Trigari obtain a very good empirical match of the RBC model with search & matching features
- This is one of the best matches for single-shock models
- Key to the success was:
 - · Convex vacancy posting
 - Staggered (multi-period) wage contracts

Possible further extensions

- Endogenous (non-constant) separation rate
- · On-the-job search
- Hours per worker adjustments

Derivation of the wage setting equation i

The negotiated wage is the solution of the problem:

$$\max_{w_t} \quad \left[\mathcal{J}_t \left(w_t \right) \right]^{\gamma} \left[\mathcal{E}_t \left(w_t \right) - \mathcal{U}_t \right]^{1 - \gamma}$$

Derivatives of \mathcal{J}_t and \mathcal{E}_t with respect to wage w_t :

$$\mathcal{J}_{t} = mpn_{t} - w_{t} + (1 - s) \cdot \beta E_{t} \left[\mathcal{J}_{t+1} \right] \quad \rightarrow \quad \frac{\partial \mathcal{J}_{t}}{\partial w_{t}} = -1$$

$$\mathcal{E}_{t} = w_{t} + \beta E_{t} \left[(1 - s) \mathcal{E}_{t+1} + s \mathcal{U}_{t+1} \right] \quad \rightarrow \quad \frac{\partial \mathcal{E}_{t}}{\partial w_{t}} = 1$$

First order condition:

$$\gamma \mathcal{J}_{t}^{\gamma - 1} \cdot \frac{\partial \mathcal{J}_{t}}{\partial w_{t}} \cdot (\mathcal{E}_{t} - \mathcal{U}_{t})^{1 - \gamma} + \mathcal{J}_{t}^{\gamma} \cdot (1 - \gamma) (\mathcal{E}_{t} - \mathcal{U}_{t})^{-\gamma} \cdot \frac{\partial \mathcal{E}_{t}}{\partial w_{t}} = 0$$
$$\gamma (\mathcal{E}_{t} - \mathcal{U}_{t}) = (1 - \gamma) \mathcal{J}_{t}$$

Derivation of the wage setting equation ii

Plug in expressions for \mathcal{E}_t , \mathcal{U}_t and \mathcal{J}_t :

$$\gamma \{ (w_t - b) + \beta (1 - s - p_t) E_t [\mathcal{E}_{t+1} - \mathcal{U}_{t+1}] \}$$

= $(1 - \gamma) \{ (mpn_t - w_t) + \beta E_t [(1 - s) \mathcal{J}_{t+1}] \}$

$$w_{t} - \gamma b + (1 - s - p_{t}) \beta E_{t} \left[\gamma \left(\mathcal{E}_{t+1} - \mathcal{U}_{t+1} \right) \right]$$
$$= (1 - \gamma) m p n_{t} + (1 - s) \beta E_{t} \left[(1 - \gamma) \mathcal{J}_{t+1} \right]$$

$$w_t - \gamma b + (1 - s - p_t) \beta \mathcal{E}_t [(1 - \gamma) \mathcal{J}_{t+1}]$$
$$= (1 - \gamma) mpn_t + (1 - s) \beta \mathcal{E}_t [(1 - \gamma) \mathcal{J}_{t+1}]$$

Derivation of the wage setting equation iii

$$w_{t} = \gamma b + (1 - \gamma) \{ mpn_{t} + p_{t}\beta E_{t} [\mathcal{J}_{t+1}] \}$$

$$\kappa/q_{t} = \beta E_{t} [\mathcal{J}_{t+1}]$$

$$w_{t} = \gamma b + (1 - \gamma) (mpn_{t} + p_{t}\kappa/q_{t})$$

$$w_{t} = \gamma b + (1 - \gamma) (mpn_{t} + \kappa\theta_{t})$$