Marcin Bielecki, Advanced Macroeconomics IE, Spring 2024 Homework 1, deadline: February 27, 4:45 PM

Problem 1

Consider the following two-period utility maximization problem. This utility function belongs to the Constant Relative Risk Aversion (CRRA) class of functions that will be often used throughout our course.¹ An agent lives for two periods and in both receives some positive income. Solve for the optimal consumption values.

$$\max_{c_1, c_2, a} \quad U = \frac{c_1^{1-\sigma} - 1}{1-\sigma} + \beta \frac{c_2^{1-\sigma} - 1}{1-\sigma}$$

subject to $c_1 + a = y_1$
 $c_2 = y_2 + (1+r) a$

where $\sigma \ge 0, \beta \in [0, 1]$ and $r \ge -1$.

- (a) Rewrite the budget constraints into a single lifetime budget constraint and set up the Lagrangian.
- (b) Obtain the first order conditions for c_1 and c_2 . Express c_2 as a function of c_1 .
- (c) Using the lifetime budget constraint obtain the formulas for optimal c_1 and c_2 .
- (d) Using your results from (c), set $\sigma = 1$ and verify that the formulas for optimal c_1 and c_2 are identical to the ones we obtained in class for the utility function $U = \ln c_1 + \beta \ln c_2$.
- (e) Return to expressions obtained in (c). Assume now that $y_2 = 0$. How does c_1 react when interest rate r increases? How does this reaction depend on σ ?

Problem 2

Solve the following household problem that faces future income uncertainty:

 $\max_{c_1, c_2, a} \quad U = \ln c_1 + E [\ln c_2] \quad \text{subject to} \quad c_1 + a = y_1 \quad \text{and} \quad c_2 = y_2 + a$

where for simplicity it was already assumed that $\beta = 1$ and r = 0. Moreover, assume that first period income is certain and equals y, while second period income will be equal to either y + e or y - e, with 50-50% probability (where $0 \le e < y$):

$$y_2 = \begin{cases} y + e & \text{with probability } 1/2\\ y - e & \text{with probability } 1/2 \end{cases}$$

- (a) Using budget constraints express c_1 and possible levels of c_2 as functions of y, e and a.
- (b) Using the properties of the expected value, rewrite the household's utility in terms of possible realizations of current and future consumption, using expressions prepared in (a).
- (c) Your problem should at this stage look like this: max U(y, e, a) where a is the only choice variable. Find optimal a (no need for Lagrangian, simply calculate $\partial U/\partial a = 0$ and solve the resulting quadratic equation for a).
- (d) What are the levels of optimal c_1 , c_2 and a when e = 0? Provide economic interpretation of these results.
- (e) What are the levels of optimal c_1 , c_2 and a when e > 0? Show also that $\partial a/\partial e > 0$. Provide economic interpretation of these results.

¹The CRRA function can be thought of as a generalized logarithmic function. For $\sigma = 1$ the CRRA function becomes logarithmic, which can be easily proven by using the L'Hôpital's rule to compute the following limit: $\lim_{\sigma \to 1} \frac{c^{1-\sigma}-1}{1-\sigma}$

Problem 3

Consider the following two-period model with two assets (bonds and physical capital):

$$\max_{c_1, c_2, b, k} \quad U = \ln c_1 + \beta \ln c_2$$

subject to
$$c_1 + b + k = y_1$$
$$c_2 = y_2 + (1+r) b + (1-\delta)$$
$$y_2 = Ak^{\alpha}$$

k

where b denotes bonds, $\delta \in (0, 1)$ stands for capital depreciation rate, A > 0 is the level of technology and $\alpha \in (0, 1)$ is the elasticity of production to capital.

- (a) Write down the problem in the form of a Lagrangian.
- (b) Find the optimal values of c_1 , c_2 , b and k. *Hint: once you find the optimal* k, you can treat it as a parameter.
- (c) Calculate the derivative of optimal k with respect to r. Provide intuition for this result. *Hint: you can assume* $\alpha = 1/2$ to simplify the calculations.
- (d) What is the effect of an increase in A on c_1 , c_2 , b and k? Provide intuition for this result.

Problem 4

In this economy households enter period 1 with a unit share of firm stock each ($\tilde{s} = 1$) and receive endowment $y_1 = 1$. They can then use these resources to either consume or use to purchase stocks sand bonds b, at their respective prices p^s and p^b . Each unit of a bond will pay a unit of consumption in period 2 with certainty, while both labor income and stock payoff are subject to uncertainty. The firms are going to generate revenue $y_2 = \{y^l, y^h\}$ where $y^l < y^h$, with the probability of the low state denoted by q. The firm (stock) owners will receive a fraction $\alpha \in (0, 1)$ of firm's revenue, while workers will receive a fraction $1 - \alpha$ of firm's revenue as their labor income. The problem of the household is then:

$$\max_{c_1, c_2, s, b} \quad U = \frac{c_1^{1-\sigma}}{1-\sigma} + \beta \mathbf{E} \left[\frac{c_2^{1-\sigma}}{1-\sigma} \right]$$

subject to $c_1 + p^s s + p^b b = y_1 + p^s \tilde{s}$
 $c_2 = (1-\alpha) y_2 + d_2 \cdot s + b$
 $d_2 = \alpha y_2$

- (a) Using the Lagrangian approach, derive the first order conditions of the households.
- (b) Combine the FOCs w.r.t. c_1 , c_2 and s to obtain the "stock" Euler equation. Combine the FOCs w.r.t. c_1 , c_2 and b to obtain the "bond" Euler equation.
- (c) Examine the equilibrium where s = 1 (households are satisfied with current holdings of stocks and there are no splits or mergers) and b = 0 (nobody issues or buys bonds). Using the budget constraints and properties of the expected value find the expressions for asset prices.
- (d) Assume that: $\sigma = 1$, q = 1/2, $y^l = 1 e$, $y^h = 1 + e$, with $e \in [0, 1)$. Find the asset prices and their expected returns. Calculate the equity risk premium. When would it be equal to 0? Why? *Hint: the resulting stock price will be independent of e, which is an artifact due to our simplifying assumptions.*
- (e) Suppose now that during the low state both labor and asset income are subject to additional, symmetric idiosyncratic risk, and are given respectively by $(1 \pm z) (1 \alpha) y_2^l$ and $(1 \pm z) \alpha y_2^l$. Each household randomly draws either positive or negative $z \in [0, 1)$ with 50-50% probability. Assume the same numerical values as in (d). Calculate asset prices and expected returns. How does the equity risk premium depend on z^2 ? Why? *Hint: the resulting stock price will be independent of z, which is an artifact due to our simplifying assumptions.*