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RBC model vs data comparison

Std. Dev. Corr. w. y Autocorr.
Data Model Data Model Data Model

Output y 1.60 1.60 1.00 1.00 0.85 0.72
Consumption c 0.86 0.57 0.76 0.92 0.83 0.80
Investment i 4.54 5.14 0.79 0.99 0.87 0.71
Capital k 0.57 0.46 0.36 0.08 0.97 0.96
Hours h 1.60 0.73 0.81 0.98 0.90 0.71
Wage w 0.84 0.73 0.10 0.99 0.65 0.75
Interest rate r 0.39 0.06 -0.01 0.96 0.40 0.71
TFP z 1.00 1.15 0.67 1.00 0.71 0.72
Productivity y/h 1.30 0.95 0.51 0.99 0.65 0.75



RBC model vs data comparison

I Model performance is quite good – it was a big surprise in the 1980s!
I There are some problems with it though

I In the data, hours are just as volatile as output
I In the model, hours are less than half as volatile as output
I In the data, real wage can be either pro- or countercyclical
I In the model, real wage is strongly procyclical
I In the data TFP and productivity are mildly correlated with output
I In the model both are 1:1 correlated with output

I These results suggest that
I Need some room for nominal variables
I More shocks than just TFP are needed
I We need to focus more on labor market

– should improve behavior of hours and real wage



Indivisible labor: introduction

Most of the variation in hours worked is on the extensive margin
(employment-unemployment) rather than on the intensive margin
(hours worked by individual employees)
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Indivisible labor: introduction

Most of the variation in hours worked is on the extensive margin
(employment-unemployment) rather than on the intensive margin
(hours worked by individual employees)

Ht = Ltht −→ log Ht = log Lt + log ht

Var (log H) = Var (log L) + Var (log h) + 2 · Cov (log N, log h)

Variance-covariance matrix of Hodrick-Prescott deviations
Total Hours Employment Hours per Employee

Total Hours 3.52
Employment 2.47 0.40
Hours per Employee 0.40 0.24

About 70% of variance of total hours worked is accounted for by variance
of employment level and only 7% is accounted for by variance of hours
worked by individual employees (the rest is accounted for by covariance)



Indivisible labor: setup

I “Realistic” hours worked variation results from a two-step process
I Decision between working and not working
I Conditional on working, how much to work

I This is difficult to model – we’ll focus on the first step only

I Gary Hansen (1985) and Richard Rogerson (1988)
invented a clever technical solution

I In the RBC model households choose how much to work
I Here they will choose the probability p of working h̄ hours

I All workers are identical
I Each worker can work either 0 hours

or a fixed number of hours h̄
I Each worker is a part of big family and consumes the same amount

regardless of working or not
I As a consequence all workers choose the same probability of working



Households’ problem

Consider first a single-period problem

max U = log c + E [φ log (1− h) |p]

Expand the expected term

E [φ log (1− h) |p] = pφ log
(
1− h̄

)
+(1− p)φ log (1− 0) = pφ log

(
1− h̄

)
Since all workers choose the same p, the average number of hours
per worker household h is equal to probability p times working hours
per employed h̄

h = ph̄ −→ p = h/h̄

Going back to the expected term

E [φ log (1− h) |p] = pφ log
(
1− h̄

)
= h

φ log
(
1− h̄

)
h̄

= −Bh

where B =
(
−φ log

(
1− h̄

)
/h̄
)
> 0. Utility becomes linear in h!



Households’ solution I

A representative household solves expected utility maximization problem

max U0 = E0

[ ∞∑
t=0

βt (log ct − Bht)
]

subject to at+1 + ct = (1 + rt) at + wtht + divt

Lagrangian

L =
∞∑

t=0
βtE0 [log ct − Bht ]

+
∞∑

t=0
βtE0 [λt [(1 + rt) at + wtht + divt − at+1 − ct ]]



Households’ solution II

Lagrangian

L =
∞∑

t=0
βtE0 [log ct − Bht ]

+
∞∑

t=0
βtE0 [λt [(1 + rt) at + wtht + divt − at+1 − ct ]]

First Order Conditions

∂L
∂ct

= βtE0

[
1
ct

]
− βtE0 [λt ] = 0 −→ λt = 1

ct
∂L
∂ht

= βt · E0 [−B] + βtE0 [λtwt ] = 0 −→ λt = B
wt

∂L
∂at+1

= −E0 [λt ] + βE0 [λt+1 (1 + rt+1)] = 0

−→ λt = βEt [λt+1 (1 + rt+1)]



Households’ solution III

First Order Conditions

ct : λt = 1
ct

ht : λt = B
wt

at+1 : λt = βEt [λt+1 (1 + rt+1)]

Resulting

Intertemporal condition (c + a) : 1 = βEt

[
ct

ct+1
(1 + rt+1)

]
Intratemporal condition (c + h) : B = wt

ct



Full set of equilibrium conditions

System of 8 equations and 8 unknowns: {c, h, y , r ,w , k, i , z}

Euler equation : 1 = βEt

[
ct

ct+1
(1 + rt+1)

]
Consumption-hours choice : B = wt

ct

Production function : yt = ztkα
t h1−α

t

Real interest rate : rt = α
yt
kt
− δ

Real hourly wage : wt = (1− α) yt
ht

Investment : it = kt+1 − (1− δ) kt

Output accounting : yt = ct + it
TFP AR(1) process : log zt = ρz log zt−1 + εt



Steady state – closed form solution
Start with the Euler equation

1 = β (1 + r) −→ r = 1
β
− 1

From the interest rate equation obtain the k/h ratio

r = αkα−1h1−α−δ −→
(

k
h

)α−1
= r + δ

α
−→ k

h =
(

α

r + δ

) 1
1−α

From the production function obtain the y/h ratio and use it to get wage

y = kαh1−α −→ y
h =

(
k
h

)α

and w = (1− α) y
h

From investment and output accounting equations obtain the c/h ratio

i = δk −→ y = c + δk −→ c
h = y

h − δ
k
h

Get c from the consumption-hours choice. Then obtain h.
The rest follows from h.

c = w
B and h = c

c/h



Parameters

I To best compare our two models,
we need them to generate identical steady states

I We replace parameter φ with parameter B
I We choose the value for B so that it matches h = 1/3
I For this model B = 2.63



Model comparison: impulse response functions
RBC model IRF: black solid lines
Indivisible labor IRF: red dashed lines
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Model comparison: moments

Std. Dev. Corr. w. y Autocorr.
Data RBC Ind Data RBC Ind Data RBC Ind

y 1.60 1.60 1.60 1.00 1.00 1.00 0.85 0.72 0.72
c 0.86 0.57 0.53 0.76 0.92 0.90 0.83 0.80 0.81
i 4.54 5.14 5.33 0.79 0.99 0.99 0.87 0.71 0.71
k 0.57 0.46 0.47 0.36 0.08 0.08 0.97 0.96 0.96
h 1.60 0.73 1.15 0.81 0.98 0.98 0.90 0.71 0.70
w 0.84 0.73 0.53 0.10 0.99 0.90 0.65 0.75 0.81
z 1.00 1.15 0.83 0.67 1.00 1.00 0.71 0.72 0.72

y/h 1.30 0.95 0.53 0.51 0.99 0.90 0.65 0.75 0.81



Model comparison: model-generated hours worked
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Indivisible labor: summary

I Model enhances hours volatility – but it’s still too low
I Improves a bit correlation of wages and productivity with output
I Slightly decreases empirical match in other dimensions
I Technical advantage – requires smaller TFP shocks
I Philosophical advantage – more “realistic” labor market



Search and matching: introduction

I Labor markets are in a state of constant flux
I At the same time there are job-seeking workers

and worker-seeking firms
I Labor markets are decentralized and thus active search is needed
I Search friction leads to unemployment even in the steady state



Labor market status and flows: EU 2017Q2-2017Q3



Labor market status change probabilities in EU

Source:
http://ec.europa.eu/eurostat/statistics-explained/

index.php/Labour_market_flow_statistics_in_the_EU



Unemployment and vacancy rates: USA 1948Q1-2018Q1
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Labor market fluctuations: USA 1950Q1-2018Q1
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Matching function

I Firms create open job positions (openings, vacancies)
I Workers search for jobs
I Both jobs and workers are heterogeneous

– not every possible match is attractive
I Matching function captures this feature
I New matches M are a function of the pool of unemployed U

and vacancies V
Mt = χV η

t U1−η
t

I After normalizing labor force to unity, match probability m
is a function of unemployment rate u and vacancy rate v

mt = χvη
t u1−η

t

where χ > 0 and η ∈ (0, 1)



Job finding and job filling probabilities

I Unemployed workers are interested in job finding probability p

pt = mt
ut

= χ

(
vt
ut

)η

= χθη
t = qtθt

where θ = v/u is called labor market tightness
I Firms with vacancies care about job filling probability q

qt = mt
vt

= χ

(
vt
ut

)η−1
= χθη−1

t = pt
θt

I Dual externality from congestion
I High unemployment rate decreases p and increases q
I High vacancy rate increases p and decreases q



Employment dynamics
I Ignoring labor market inactivity, employment rate n

and unemployment rate u sum to unity:

nt + ut = 1 −→ nt = 1− ut

I Existing matches are destroyed with exogenous probability s
I New matches increase next period employment

nt = nt−1 − snt−1 + mt−1

ut = ut−1 + snt−1 −mt−1

I We can find the steady state unemployment rate

u = u + s (1− u)− p (θ) u

u = s
s + p (θ)

as a function of separation and job finding probabilities
I If separation probability and matching function parameters do not

change, then there exists a stable negative relationship between
unemployment and vacancy rates known as the Beveridge curve



Beveridge curve: theory

Graph by Leszek Wincenciak



Beveridge curve: data
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Beveridge curve: data
Detrending with Hodrick-Prescott filter takes out structural shifts
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Beveridge curve: “estimation”
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Firm side
I Assume firms and workers discount future with β
I Period net gain from a filled job equals

marginal product of employee less wage
I With probability (1− s) the match will survive into the next period

Jt = (mpnt − wt) + βEt [(1− s)Jt+1 + sVt+1]
I Period net loss from open vacancy is its cost κ

(advertising, interviewing)
I With probability q the vacancy will be filled

Vt = −κ+ βEt [qtJt+1 + (1− qt)Vt+1]
I Free entry in vacancies ensures that always V = 0

κ

qt
= βEt [Jt+1]

Jt = (mpnt − wt) + βEt [(1− s)Jt+1]
I In the steady state (r = 1/β − 1)

w = mpn − (r + s) κ

q (θ)



Worker side

I Period net gain from employment equals wage
I With probability (1− s) the match will survive into the next period

Et = wt + βEt [(1− s) Et+1 + sUt+1]

I Period net gain from unemployment equals benefits
(and possibly utility from leisure)

I With probability p unemployed finds a job

Ut = b + βEt [ptEt+1 + (1− pt)Ut+1]



Wage setting I

I In principle, wage can be as low as gain from unemployment b
or as high as marginal product of employee mpn plus match gain

I Negotiated wage will be somewhere between those two values
I An easy way to pin down wage is Nash bargaining
I Let γ ∈ [0, 1] denote the relative bargaining power of firms
I Intuitively w → b if γ → 1 and w → mpn + κθ if γ → 0
I The negotiated wage is the solution of the problem

max
wt

(Jt (wt))γ (Et (wt)− Ut)1−γ

I Solving the problem results in

γ (Et − Ut) = (1− γ)Jt

I Alternatively: total match surplus St = (Et − Ut) + Jt

Et − Ut = (1− γ)St and Jt = γSt



Wage setting II

γ (Et − Ut) = (1− γ)Jt

Plug in expressions for Et , Ut and Jt

γ {(wt − b) + β (1− s − pt) Et [Et+1 − Ut+1]}
= (1− γ) {(mpnt − wt) + βEt [(1− s)Jt+1]}

wt − γb + (1− s − pt)βEt [γ (Et+1 − Ut+1)]
= (1− γ) mpnt + (1− s)βEt [(1− γ)Jt+1]

wt − γb + (1− s − pt)βEt [(1− γ)Jt+1]
= (1− γ) mpnt + (1− s)βEt [(1− γ)Jt+1]

wt = γb + (1− γ) {mpnt + ptβEt [Jt+1]}
κ/qt = βEt [Jt+1]

wt = γb + (1− γ) (mpnt + ptκ/qt)
wt = γb + (1− γ) (mpnt + κθt)



Full set of equilibrium conditions

System of 9 equations and 9 unknowns: {w ,mpn, θ,J , q, u, n,m, v}

wt = γb + (1− γ) (mpnt + κθt)
Jt = (mpnt − wt) + βEt [(1− s)Jt+1]
κ

qt
= βEt [Jt+1]

ut = 1− nt

nt = (1− s) nt−1 + mt−1

qt = χθη−1
t

θt = vt
ut

mt = χvη
t u1−η

t

ln mpnt = ρmpn ln mpnt−1 + εt



Steady state: key equations

In the steady state the model is fully summarized
by the following three key equations:

Beveridge curve (BC) : u = s
s + p (θ)

Job (vacancy) creation (JC) : w = mpn − (r + s) κ

q (θ)
Wage setting (W) : w = γb + (1− γ) (mpn + κθ)

Can be even reduced further to equations in u and θ



Steady state: graphical solution

Graph by Leszek Wincenciak



Steady state: algebraic solution

I In this model the crucial variable is labor market tightness θ
I We can find it by solving the following system

w = γb + (1− γ) (mpn + κθ)

w = mpn − (r + s) κ

q (θ)

I After some rearrangement

(r + s) κ
χ
θ1−η = γ (mpn − b)− (1− γ)κθ

I The above equation does not have a closed form solution for θ
I We can solve it easily via numerical methods
I We can also use a trick – set θ = 1 and solve for χ

(but loose a degree of freedom for calibration)

χ = [(r + s)κ] / [γ (mpn − b)− (1− γ)κ]



Comparative statics I
Effects of an increase in unemployment benefits (b ↑)
or in workers’ bargaining power (γ ↓):
I Increase in real wage w
I Decrease in labor market tightness θ
I Decrease in vacancy rate v
I Increase in unemployment rate u

Graph by Leszek Wincenciak



Comparative statics II
Effects of an increase in separation rate (s ↑)
or a decrease in matching efficiency (χ ↓):
I Decrease in real wage w
I Decrease in labor market tightness θ
I Ambiguous effect on vacancy rate v (depends on parameter values)
I Increase in unemployment rate u

Graph by Leszek Wincenciak



Comparative statics III
Effects of an increase in labor productivity (mpn ↑):

I Increase in real wage w
I Increase in labor market tightness θ
I Increase in vacancy rate v
I Decrease in unemployment rate u

Graph by Matthias Hertweck



Comparative statics IV
Effects of an increase in interest rate (r ↑)
or an increase in impatience (ρ ↑→ β ↓):
I Decrease in real wage w
I Decrease in labor market tightness θ
I Decrease in vacancy rate v
I Increase in unemployment rate u

Graph by Matthias Hertweck



Transitional dynamics

Reduced form of the model:

∆u = 0 −→ u = s
s + χθη

∆θ = θ

1− η

[
(r + s)− γ (mpn − b) χθ

η−1

κ
+ (1− γ)χθη

]
The dynamic equation for θ is independent of u
– ∆θ = 0 is a flat line in (u, θ) space



Transitional dynamics: phase diagram

Graphs by Matthias Hertweck



Transitional dynamics: positive productivity shock

Graph by Matthias Hertweck



Parameters

Values come from Shimer (2005, AER)

Description Value
χ matching efficiency 0.45
η matching elasticity of v 0.28
s separation probability 0.033
β discount factor 0.99

mpn steady state marginal product 1
κ vacancy cost 0.21
b unemployment benefit 0.4
γ firm bargaining power 0.28



Implied steady state values

Description Value
u unemployment rate 0.0687
v vacancy rate 0.0674
m new matches 0.031
θ tightness 0.98
p job finding probability 0.448
q job filling probability 0.456
w wage 0.98



Impulse response functions I
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Impulse response functions II
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Model generated Beveridge curve
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Summary

I We have a “realistic” model of the labor market
I Able to match both steady state (average)

and some cyclical properties of the labor market
I Replicates the negative slope of the Beveridge curve
I Not enough variation in employment
I Beveridge curve too steep
I Too much variation in wages



Alternative parametrization

Values come from Hagedorn & Manovskii (2008, AER)

Description Value
η matching elasticity of v 0.45
b unemployment benefit 0.965
γ firm bargaining power 0.928

I Firms have very strong bargaining position
I But unemployment gain includes leisure utility
I Steady state unchanged



Hagedorn & Manovskii: Impulse response functions
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Hagedorn & Manovskii: Beveridge curve
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Mortensen & Nagypal (2007): Beveridge curve
Set η = 0.54. Model BC replicates slope of the data BC
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Summary

I Alternative parametrizations yield better results
I Both unemployment and employment become more volatile
I Volatility of wages is diminished
I Key problem for the search and matching model identified

– period-by-period Nash bargaining
I Further extensions make alternative assumptions

about the wage setting process



Integration with RBC framework

I Very easy
I Get mpn from the usual firm problem
I Adjust β for β λt+1

λt
in the firm’s valuation since the latter is the

correct stochastic discounting factor
I Solve for labor market variables
I Get back to the RBC part
I Remember to include vacancy costs in the national accounting

equation
yt = ct + it + κvt



Observation of Fujita (2004)

Model IRF for vacancies is counterfactual



Alternative hiring cost function
I We assumed linear vacancy posting costs

ψ (vt) = κvt

wt = γb + (1− γ) (mpnt + κθt)
κ

qt
= βEt

[
mpnt+1 − wt+1 + (1− s) κ

qt+1

]
I Gertler & Trigari (2009, JPE) assume convex labor posting costs
I Define hiring rate x as the ratio of new hires to employed workers

xt = mt
nt

ψ (xt) = κ

2 x2
t nt

wt = γb + (1− γ)
(

mpnt + κ

2 x2
t + ptκxt

)
κxt = βEt

[
mpnt+1 − wt+1 + (1− s)κxt+1 + κ

2 x2
t

]
I They also consider staggered (multi-period) wage contracts

where only a fraction of previous wage contracts are renegotiated



Gertler & Trigari: Impulse response functions
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Gertler & Trigari: Beveridge curve (flexible wages)
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Gertler & Trigari: Beveridge curve (staggered wages)
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Beveridge curve: data
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Gertler & Trigari: business cycle statistics



Summary

I After adding multi-period contracts, Gertler & Trigari obtain a very
good empirical match of the RBC model with search & matching
features

I This is one of the best matches for single-shock models
I Key to the success was

I Convex vacancy posting
I Staggered (multi-period) wage contracts



Possible further extensions

I Endogenous (non-constant) separation rate
I On-the-job search
I Hours per worker adjustments


