Labor markets over the business cycle Indivisible labor. Search and matching Advanced Macroeconomics

Marcin Bielecki

University of Warsaw Faculty of Economic Sciences

University of Warsaw Faculty of Economic Sciences

Spring 2018

RBC model vs data comparison

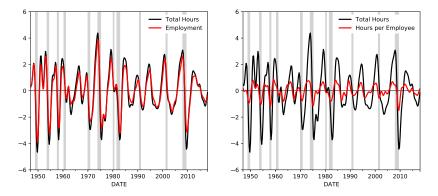
		Std. Dev.		Corr. w. y		Autocorr.	
		Data	Model	Data	Model	Data	Model
Output	у	1.60	1.60	1.00	1.00	0.85	0.72
Consumption	с	0.86	0.57	0.76	0.92	0.83	0.80
Investment	i	4.54	5.14	0.79	0.99	0.87	0.71
Capital	k	0.57	0.46	0.36	0.08	0.97	0.96
Hours	h	1.60	0.73	0.81	0.98	0.90	0.71
Wage	w	0.84	0.73	0.10	0.99	0.65	0.75
Interest rate	r	0.39	0.06	-0.01	0.96	0.40	0.71
TFP	z	1.00	1.15	0.67	1.00	0.71	0.72
Productivity	У/h	1.30	0.95	0.51	0.99	0.65	0.75

RBC model vs data comparison

- Model performance is quite good it was a big surprise in the 1980s!
- There are some problems with it though
 - In the data, hours are just as volatile as output
 - In the model, hours are less than half as volatile as output
 - In the data, real wage can be either pro- or countercyclical
 - In the model, real wage is strongly procyclical
 - In the data TFP and productivity are mildly correlated with output
 - In the model both are 1:1 correlated with output
- These results suggest that
 - Need some room for nominal variables
 - More shocks than just TFP are needed
 - We need to focus more on labor market
 - should improve behavior of hours and real wage

Indivisible labor: introduction

Most of the variation in hours worked is on the *extensive* margin (employment-unemployment) rather than on the *intensive* margin (hours worked by individual employees)



Indivisible labor: introduction

Most of the variation in hours worked is on the *extensive* margin (employment-unemployment) rather than on the *intensive* margin (hours worked by individual employees)

$$H_t = L_t h_t \longrightarrow \log H_t = \log L_t + \log h_t$$

Var (log H) = Var (log L) + Var (log h) + 2 · Cov (log N, log h)

	Total Hours	Employment	Hours per Employee		
Total Hours	3.52				
Employment		2.47	0.40		
Hours per Employee		0.40	0.24		

Variance-covariance matrix of Hodrick-Prescott deviations

About 70% of variance of total hours worked is accounted for by variance of employment level and only 7% is accounted for by variance of hours worked by individual employees (the rest is accounted for by covariance)

Indivisible labor: setup

- "Realistic" hours worked variation results from a two-step process
 - Decision between working and not working
 - Conditional on working, how much to work
- ▶ This is difficult to model we'll focus on the first step only
- Gary Hansen (1985) and Richard Rogerson (1988) invented a clever technical solution
- In the RBC model households choose how much to work
- Here they will choose the probability p of working \overline{h} hours
 - All workers are identical
 - Each worker can work either 0 hours or a fixed number of hours h
 - Each worker is a part of big family and consumes the same amount regardless of working or not
 - As a consequence all workers choose the same probability of working

Households' problem

Consider first a single-period problem

$$\max \quad U = \log c + E \left[\phi \log \left(1 - h \right) | p \right]$$

Expand the expected term

$$E\left[\phi \log \left(1-h\right) | p\right] = p\phi \log \left(1-\bar{h}\right) + (1-p) \phi \log \left(1-0\right) = p\phi \log \left(1-\bar{h}\right)$$

Since all workers choose the same p, the average number of hours per worker household h is equal to probability p times working hours per employed \bar{h}

$$h = p\bar{h} \longrightarrow p = h/\bar{h}$$

Going back to the expected term

$$E\left[\phi \log \left(1-h\right)|p\right] = p\phi \log \left(1-\bar{h}\right) = h \frac{\phi \log \left(1-\bar{h}\right)}{\bar{h}} = -Bh$$

where $B = \left(-\phi \log \left(1 - \bar{h}\right) / \bar{h}\right) > 0$. Utility becomes linear in h!

Households' solution I

A representative household solves expected utility maximization problem

$$\begin{array}{ll} \max & U_0 = E_0 \left[\sum_{t=0}^\infty \beta^t \left(\log c_t - Bh_t \right) \right] \\ \text{subject to} & a_{t+1} + c_t = (1+r_t) \, a_t + w_t h_t + div_t \end{array}$$

Lagrangian

$$\begin{aligned} \mathcal{L} &= \sum_{t=0}^{\infty} \beta^t E_0 \left[\log c_t - Bh_t \right] \\ &+ \sum_{t=0}^{\infty} \beta^t E_0 \left[\lambda_t \left[(1+r_t) \, a_t + w_t h_t + div_t - a_{t+1} - c_t \right] \right] \end{aligned}$$

Households' solution II

Lagrangian

$$\begin{aligned} \mathcal{L} &= \sum_{t=0}^{\infty} \beta^t E_0 \left[\log c_t - Bh_t \right] \\ &+ \sum_{t=0}^{\infty} \beta^t E_0 \left[\lambda_t \left[(1+r_t) \, a_t + w_t h_t + div_t - a_{t+1} - c_t \right] \right] \end{aligned}$$

First Order Conditions

$$\frac{\partial \mathcal{L}}{\partial c_t} = \beta^t E_0 \left[\frac{1}{c_t} \right] - \beta^t E_0 \left[\lambda_t \right] = 0 \quad \longrightarrow \quad \lambda_t = \frac{1}{c_t}$$
$$\frac{\partial \mathcal{L}}{\partial h_t} = \beta^t \cdot E_0 \left[-B \right] + \beta^t E_0 \left[\lambda_t w_t \right] = 0 \quad \longrightarrow \quad \lambda_t = \frac{B}{w_t}$$
$$\frac{\partial \mathcal{L}}{\partial a_{t+1}} = -E_0 \left[\lambda_t \right] + \beta E_0 \left[\lambda_{t+1} \left(1 + r_{t+1} \right) \right] = 0$$
$$\longrightarrow \quad \lambda_t = \beta E_t \left[\lambda_{t+1} \left(1 + r_{t+1} \right) \right]$$

Households' solution III

First Order Conditions

$$c_t : \lambda_t = \frac{1}{c_t}$$

$$h_t : \lambda_t = \frac{B}{w_t}$$

$$a_{t+1} : \lambda_t = \beta E_t [\lambda_{t+1} (1 + r_{t+1})]$$

Resulting

Intertemporal condition (c + a) : $1 = \beta E_t \left[\frac{c_t}{c_{t+1}} \left(1 + r_{t+1} \right) \right]$ Intratemporal condition (c + h) : $B = \frac{w_t}{c_t}$

Full set of equilibrium conditions

System of 8 equations and 8 unknowns: $\{c, h, y, r, w, k, i, z\}$

Euler equation : $1 = \beta E_t \left[\frac{c_t}{c_{t+1}} \left(1 + r_{t+1} \right) \right]$ Consumption-hours choice : $B = \frac{W_t}{T}$ Production function : $y_t = z_t k_t^{\alpha} h_t^{1-\alpha}$ Real interest rate : $r_t = \alpha \frac{y_t}{k} - \delta$ Real hourly wage : $w_t = (1 - \alpha) \frac{y_t}{h_t}$ Investment : $i_t = k_{t+1} - (1 - \delta) k_t$ Output accounting : $y_t = c_t + i_t$ TFP AR(1) process : $\log z_t = \rho_z \log z_{t-1} + \varepsilon_t$

Steady state - closed form solution

Start with the Euler equation

$$1 = \beta (1 + r) \longrightarrow r = \frac{1}{\beta} - 1$$

From the interest rate equation obtain the k/h ratio

$$r = \alpha k^{\alpha - 1} h^{1 - \alpha} - \delta \longrightarrow \left(\frac{k}{h}\right)^{\alpha - 1} = \frac{r + \delta}{\alpha} \longrightarrow \frac{k}{h} = \left(\frac{\alpha}{r + \delta}\right)^{\frac{1}{1 - \alpha}}$$

From the production function obtain the y/h ratio and use it to get wage

$$y = k^{\alpha} h^{1-\alpha} \longrightarrow \frac{y}{h} = \left(\frac{k}{h}\right)^{\alpha}$$
 and $w = (1-\alpha)\frac{y}{h}$

From investment and output accounting equations obtain the c/h ratio

$$i = \delta k \longrightarrow y = c + \delta k \longrightarrow \frac{c}{h} = \frac{y}{h} - \delta \frac{k}{h}$$

Get c from the consumption-hours choice. Then obtain h. The rest follows from h.

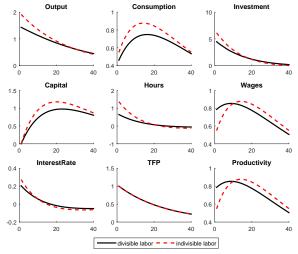
1

$$c=rac{w}{B}$$
 and $h=rac{c}{c/h}$

- To best compare our two models, we need them to generate identical steady states
- We replace parameter ϕ with parameter B
- We choose the value for *B* so that it matches h = 1/3
- For this model B = 2.63

Model comparison: impulse response functions

RBC model IRF: black solid lines Indivisible labor IRF: red dashed lines

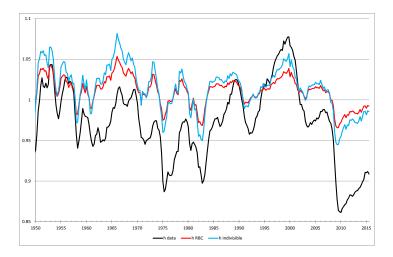


Percentage deviations from steady state (percentage points for r)

Model comparison: moments

	Std. Dev.			Corr. w. y			Autocorr.		
	Data	RBC	Ind	Data	RBC	Ind	Data	RBC	Ind
y	1.60	1.60	1.60	1.00	1.00	1.00	0.85	0.72	0.72
с	0.86	0.57	0.53	0.76	0.92	0.90	0.83	0.80	0.81
i	4.54	5.14	5.33	0.79	0.99	0.99	0.87	0.71	0.71
k	0.57	0.46	0.47	0.36	0.08	0.08	0.97	0.96	0.96
h	1.60	0.73	1.15	0.81	0.98	0.98	0.90	0.71	0.70
W	0.84	0.73	0.53	0.10	0.99	0.90	0.65	0.75	0.81
z	1.00	1.15	0.83	0.67	1.00	1.00	0.71	0.72	0.72
У/h	1.30	0.95	0.53	0.51	0.99	0.90	0.65	0.75	0.81

Model comparison: model-generated hours worked

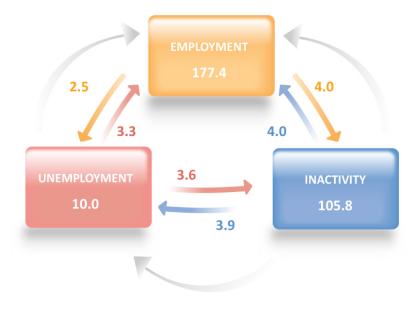


- Model enhances hours volatility but it's still too low
- Improves a bit correlation of wages and productivity with output
- Slightly decreases empirical match in other dimensions
- Technical advantage requires smaller TFP shocks
- Philosophical advantage more "realistic" labor market

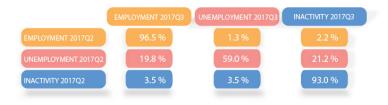
Search and matching: introduction

- Labor markets are in a state of constant flux
- At the same time there are job-seeking workers and worker-seeking firms
- Labor markets are decentralized and thus active search is needed
- Search friction leads to unemployment even in the steady state

Labor market status and flows: EU 2017Q2-2017Q3



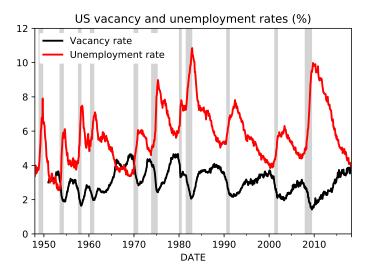
Labor market status change probabilities in EU



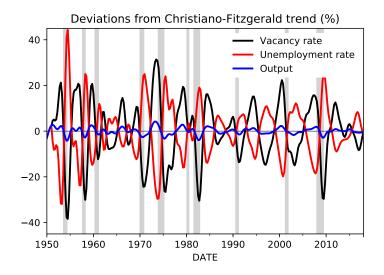
Source:

http://ec.europa.eu/eurostat/statistics-explained/ index.php/Labour_market_flow_statistics_in_the_EU

Unemployment and vacancy rates: USA 1948Q1-2018Q1



Labor market fluctuations: USA 1950Q1-2018Q1



Matching function

- Firms create open job positions (openings, vacancies)
- Workers search for jobs
- Both jobs and workers are heterogeneous
 not every possible match is attractive
- Matching function captures this feature
- New matches *M* are a function of the pool of unemployed *U* and vacancies *V*

$$M_t = \chi V_t^{\eta} U_t^{1-\eta}$$

After normalizing labor force to unity, match probability m is a function of unemployment rate u and vacancy rate v

$$m_t = \chi v_t^{\eta} u_t^{1-\eta}$$

where $\chi > 0$ and $\eta \in (0,1)$

Job finding and job filling probabilities

Unemployed workers are interested in job finding probability p

$$p_t = \frac{m_t}{u_t} = \chi \left(\frac{v_t}{u_t}\right)^{\eta} = \chi \theta_t^{\eta} = q_t \theta_t$$

where $\theta = v/u$ is called labor market tightness

Firms with vacancies care about job filling probability q

$$q_t = \frac{m_t}{v_t} = \chi \left(\frac{v_t}{u_t}\right)^{\eta-1} = \chi \theta_t^{\eta-1} = \frac{p_t}{\theta_t}$$

Dual externality from congestion

- High unemployment rate decreases p and increases q
- High vacancy rate increases p and decreases q

Employment dynamics

Ignoring labor market inactivity, employment rate n and unemployment rate u sum to unity:

 $n_t + u_t = 1 \longrightarrow n_t = 1 - u_t$

Existing matches are destroyed with exogenous probability s
 New matches increase next period employment

$$n_t = n_{t-1} - sn_{t-1} + m_{t-1}$$
$$u_t = u_{t-1} + sn_{t-1} - m_{t-1}$$

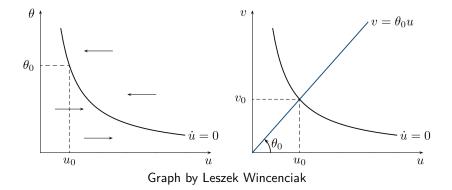
We can find the steady state unemployment rate

$$u = u + s (1 - u) - p (\theta) u$$
$$u = \frac{s}{s + p (\theta)}$$

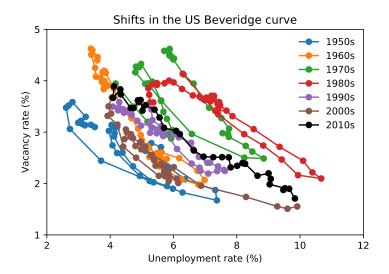
as a function of separation and job finding probabilities

If separation probability and matching function parameters do not change, then there exists a stable negative relationship between unemployment and vacancy rates known as the Beveridge curve

Beveridge curve: theory

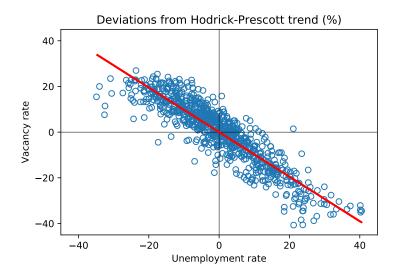


Beveridge curve: data

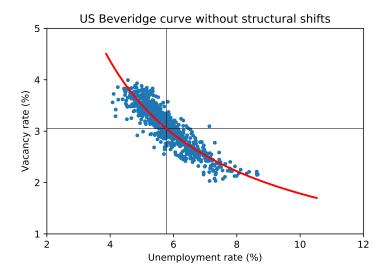


Beveridge curve: data

Detrending with Hodrick-Prescott filter takes out structural shifts



Beveridge curve: "estimation"



Firm side

- $\blacktriangleright\,$ Assume firms and workers discount future with $\beta\,$
- Period net gain from a filled job equals marginal product of employee less wage
- With probability (1 s) the match will survive into the next period

$$\mathcal{J}_{t} = (mpn_{t} - w_{t}) + \beta E_{t} \left[(1 - s) \mathcal{J}_{t+1} + s \mathcal{V}_{t+1} \right]$$

- Period net loss from open vacancy is its cost κ (advertising, interviewing)
- With probability q the vacancy will be filled

$$\mathcal{V}_{t} = -\kappa + \beta E_{t} \left[q_{t} \mathcal{J}_{t+1} + (1 - q_{t}) \mathcal{V}_{t+1} \right]$$

• Free entry in vacancies ensures that always $\mathcal{V} = 0$

$$\begin{aligned} \frac{\kappa}{q_t} &= \beta E_t \left[\mathcal{J}_{t+1} \right] \\ \mathcal{J}_t &= (m p n_t - w_t) + \beta E_t \left[(1 - s) \, \mathcal{J}_{t+1} \right] \end{aligned}$$

• In the steady state $(r = 1/\beta - 1)$

$$w = mpn - (r + s) \frac{\kappa}{q(\theta)}$$

- Period net gain from employment equals wage
- With probability (1 s) the match will survive into the next period

$$\mathcal{E}_{t} = w_{t} + \beta E_{t} \left[\left(1 - s \right) \mathcal{E}_{t+1} + s \mathcal{U}_{t+1} \right]$$

- Period net gain from unemployment equals benefits (and possibly utility from leisure)
- With probability p unemployed finds a job

$$\mathcal{U}_t = b + \beta E_t \left[p_t \mathcal{E}_{t+1} + (1 - p_t) \mathcal{U}_{t+1} \right]$$

Wage setting I

- In principle, wage can be as low as gain from unemployment b or as high as marginal product of employee mpn plus match gain
- Negotiated wage will be somewhere between those two values
- An easy way to pin down wage is Nash bargaining
- ▶ Let $\gamma \in [0,1]$ denote the relative bargaining power of firms
- Intuitively $w \to b$ if $\gamma \to 1$ and $w \to mpn + \kappa \theta$ if $\gamma \to 0$
- The negotiated wage is the solution of the problem

$$\max_{w_t} \quad \left(\mathcal{J}_t\left(w_t\right)\right)^{\gamma} \left(\mathcal{E}_t\left(w_t\right) - \mathcal{U}_t\right)^{1-\gamma}$$

Solving the problem results in

$$\gamma \left(\mathcal{E}_t - \mathcal{U}_t \right) = (1 - \gamma) \, \mathcal{J}_t$$

• Alternatively: total match surplus $S_t = (\mathcal{E}_t - \mathcal{U}_t) + \mathcal{J}_t$

$$\mathcal{E}_t - \mathcal{U}_t = (1 - \gamma) \mathcal{S}_t$$
 and $\mathcal{J}_t = \gamma \mathcal{S}_t$

Wage setting II

$$\gamma\left(\mathcal{E}_t - \mathcal{U}_t\right) = (1 - \gamma) \mathcal{J}_t$$

Plug in expressions for \mathcal{E}_t , \mathcal{U}_t and \mathcal{J}_t

$$\gamma \left\{ (w_t - b) + \beta \left(1 - s - p_t \right) \mathcal{E}_t \left[\mathcal{E}_{t+1} - \mathcal{U}_{t+1} \right] \right\}$$

= $(1 - \gamma) \left\{ (mpn_t - w_t) + \beta \mathcal{E}_t \left[(1 - s) \mathcal{J}_{t+1} \right] \right\}$

$$w_t - \gamma b + (1 - s - p_t) \beta E_t \left[\gamma \left(\mathcal{E}_{t+1} - \mathcal{U}_{t+1} \right) \right] \\= (1 - \gamma) \operatorname{mpn}_t + (1 - s) \beta E_t \left[(1 - \gamma) \mathcal{J}_{t+1} \right]$$

$$w_t - \gamma b + (1 - s - p_t) \beta E_t [(1 - \gamma) \mathcal{J}_{t+1}] \\= (1 - \gamma) mpn_t + (1 - s) \beta E_t [(1 - \gamma) \mathcal{J}_{t+1}]$$

$$w_{t} = \gamma b + (1 - \gamma) \{mpn_{t} + p_{t}\beta E_{t} [\mathcal{J}_{t+1}]\}$$

$$\kappa/q_{t} = \beta E_{t} [\mathcal{J}_{t+1}]$$

$$w_{t} = \gamma b + (1 - \gamma) (mpn_{t} + p_{t}\kappa/q_{t})$$

$$w_{t} = \gamma b + (1 - \gamma) (mpn_{t} + \kappa\theta_{t})$$

Full set of equilibrium conditions

In

System of 9 equations and 9 unknowns: $\{w, mpn, \theta, \mathcal{J}, q, u, n, m, v\}$

$$w_{t} = \gamma b + (1 - \gamma) (mpn_{t} + \kappa\theta_{t})$$

$$\mathcal{J}_{t} = (mpn_{t} - w_{t}) + \beta E_{t} [(1 - s) \mathcal{J}_{t+1}]$$

$$\frac{\kappa}{q_{t}} = \beta E_{t} [\mathcal{J}_{t+1}]$$

$$u_{t} = 1 - n_{t}$$

$$n_{t} = (1 - s) n_{t-1} + m_{t-1}$$

$$q_{t} = \chi \theta_{t}^{\eta - 1}$$

$$\theta_{t} = \frac{v_{t}}{u_{t}}$$

$$m_{t} = \chi v_{t}^{\eta} u_{t}^{1 - \eta}$$

$$mpn_{t} = \rho_{mpn} \ln mpn_{t-1} + \varepsilon_{t}$$

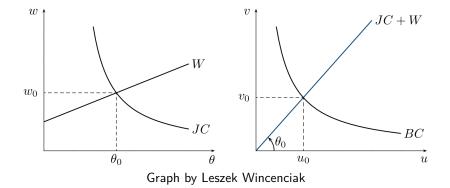
In the steady state the model is fully summarized by the following three key equations:

Beveridge curve (BC) :
$$u = \frac{s}{s + p(\theta)}$$

Job (vacancy) creation (JC) : $w = mpn - (r + s) \frac{\kappa}{q(\theta)}$
Wage setting (W) : $w = \gamma b + (1 - \gamma) (mpn + \kappa \theta)$

Can be even reduced further to equations in u and $\boldsymbol{\theta}$

Steady state: graphical solution



Steady state: algebraic solution

 \blacktriangleright In this model the crucial variable is labor market tightness θ

We can find it by solving the following system

$$w = \gamma b + (1 - \gamma) (mpn + \kappa \theta)$$
$$w = mpn - (r + s) \frac{\kappa}{q(\theta)}$$

After some rearrangement

$$(r+s)\frac{\kappa}{\chi} heta^{1-\eta}=\gamma\left(mpn-b
ight)-\left(1-\gamma
ight)\kappa heta$$

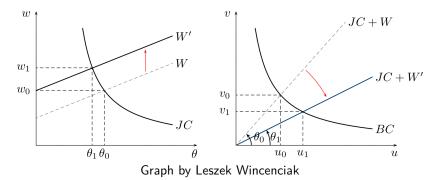
- \blacktriangleright The above equation does not have a closed form solution for θ
- We can solve it easily via numerical methods
- We can also use a trick set θ = 1 and solve for χ (but loose a degree of freedom for calibration)

$$\chi = \left[\left(\mathbf{r} + \mathbf{s} \right) \kappa \right] / \left[\gamma \left(\mathbf{mpn} - \mathbf{b} \right) - \left(1 - \gamma \right) \kappa \right]$$

Comparative statics I

Effects of an increase in unemployment benefits ($b \uparrow$) or in workers' bargaining power ($\gamma \downarrow$):

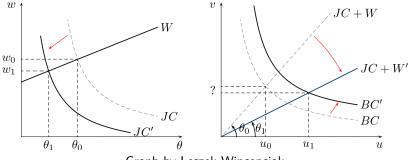
- ▶ Increase in real wage w
- Decrease in labor market tightness θ
- Decrease in vacancy rate v
- Increase in unemployment rate u



Comparative statics II

Effects of an increase in separation rate (s \uparrow) or a decrease in matching efficiency ($\chi \downarrow$):

- Decrease in real wage w
- Decrease in labor market tightness θ
- Ambiguous effect on vacancy rate v (depends on parameter values)
- Increase in unemployment rate u

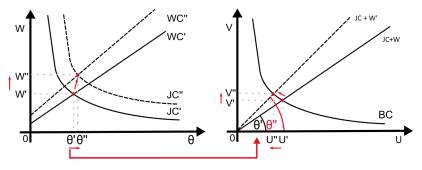


Graph by Leszek Wincenciak

Comparative statics III

Effects of an increase in labor productivity $(mpn \uparrow)$:

- ► Increase in real wage w
- Increase in labor market tightness θ
- Increase in vacancy rate v
- Decrease in unemployment rate u

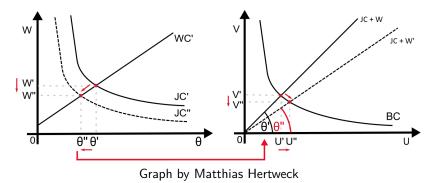


Graph by Matthias Hertweck

Comparative statics IV

Effects of an increase in interest rate $(r \uparrow)$ or an increase in impatience $(\rho \uparrow \rightarrow \beta \downarrow)$:

- Decrease in real wage w
- Decrease in labor market tightness θ
- Decrease in vacancy rate v
- Increase in unemployment rate u

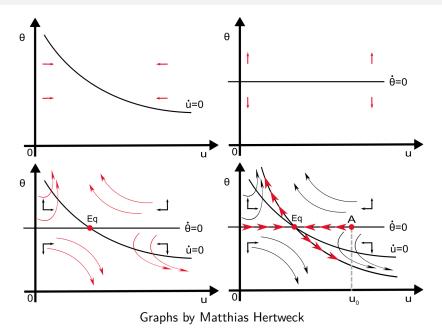


Reduced form of the model:

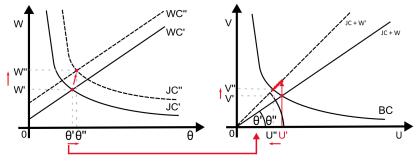
$$\Delta u = 0 \quad \longrightarrow \quad u = \frac{s}{s + \chi \theta^{\eta}}$$
$$\Delta \theta = \frac{\theta}{1 - \eta} \left[(r + s) - \gamma (mpn - b) \frac{\chi \theta^{\eta - 1}}{\kappa} + (1 - \gamma) \chi \theta^{\eta} \right]$$

The dynamic equation for θ is independent of $u - \Delta \theta = 0$ is a flat line in (u, θ) space

Transitional dynamics: phase diagram



Transitional dynamics: positive productivity shock



Graph by Matthias Hertweck

Parameters

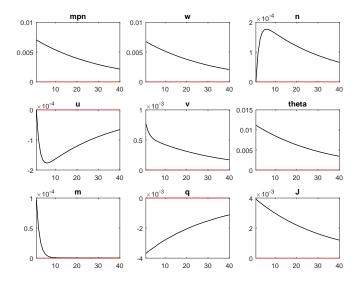
Values come from Shimer (2005, AER)

	Description	Value
χ	matching efficiency	0.45
η	matching elasticity of v	0.28
5	separation probability	0.033
β	discount factor	0.99
mpn	steady state marginal product	1
κ	vacancy cost	0.21
b	unemployment benefit	0.4
γ	firm bargaining power	0.28

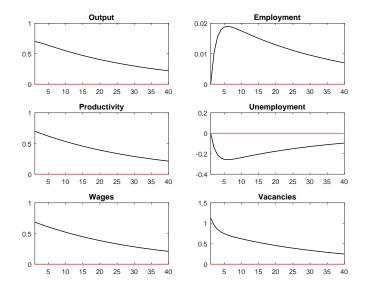
Implied steady state values

	Description	Value
и	unemployment rate	0.0687
v	vacancy rate	0.0674
т	new matches	0.031
θ	tightness	0.98
р	job finding probability	0.448
q	job filling probability	0.456
W	wage	0.98

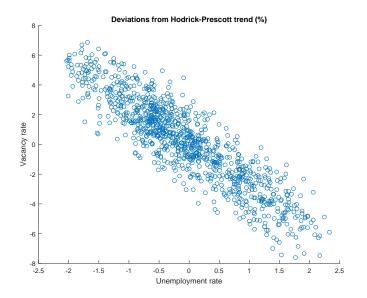
Impulse response functions I



Impulse response functions II



Model generated Beveridge curve



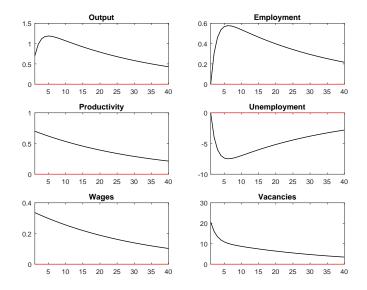
- We have a "realistic" model of the labor market
- Able to match both steady state (average) and some cyclical properties of the labor market
- Replicates the negative slope of the Beveridge curve
- Not enough variation in employment
- Beveridge curve too steep
- Too much variation in wages

Values come from Hagedorn & Manovskii (2008, AER)

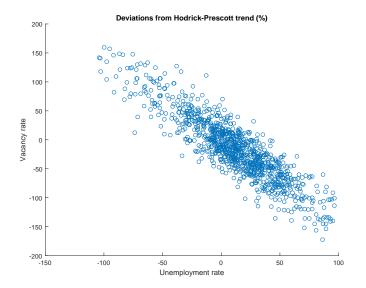
	Description	Value
η	matching elasticity of v	0.45
b	unemployment benefit	0.965
γ	firm bargaining power	0.928

- Firms have very strong bargaining position
- But unemployment gain includes leisure utility
- Steady state unchanged

Hagedorn & Manovskii: Impulse response functions

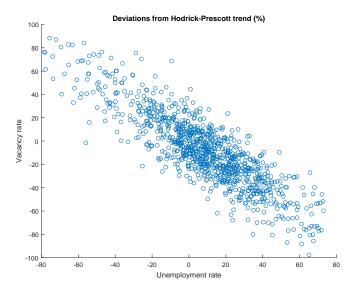


Hagedorn & Manovskii: Beveridge curve



Mortensen & Nagypal (2007): Beveridge curve

Set $\eta = 0.54$. Model BC replicates slope of the data BC



Summary

- Alternative parametrizations yield better results
- Both unemployment and employment become more volatile
- Volatility of wages is diminished
- Key problem for the search and matching model identified
 period-by-period Nash bargaining
- Further extensions make alternative assumptions about the wage setting process

Integration with RBC framework

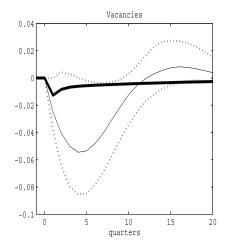
Very easy

- Get mpn from the usual firm problem
- Adjust β for β^λ_{t+1}/λ_t in the firm's valuation since the latter is the correct stochastic discounting factor
- Solve for labor market variables
- Get back to the RBC part
- Remember to include vacancy costs in the national accounting equation

$$y_t = c_t + i_t + \kappa v_t$$

Observation of Fujita (2004)

Model IRF for vacancies is counterfactual



Alternative hiring cost function

We assumed linear vacancy posting costs

$$\psi(\mathbf{v}_{t}) = \kappa \mathbf{v}_{t}$$

$$w_{t} = \gamma b + (1 - \gamma) (m p n_{t} + \kappa \theta_{t})$$

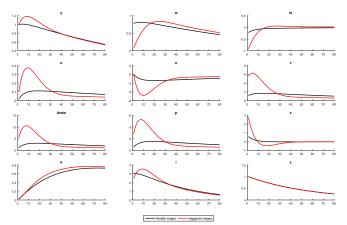
$$\frac{\kappa}{q_{t}} = \beta E_{t} \left[m p n_{t+1} - w_{t+1} + (1 - s) \frac{\kappa}{q_{t+1}} \right]$$

Gertler & Trigari (2009, JPE) assume convex labor posting costs
 Define hiring rate x as the ratio of new hires to employed workers

$$\begin{aligned} x_t &= \frac{m_t}{n_t} \\ \psi(x_t) &= \frac{\kappa}{2} x_t^2 n_t \\ w_t &= \gamma b + (1 - \gamma) \left(m p n_t + \frac{\kappa}{2} x_t^2 + p_t \kappa x_t \right) \\ \kappa x_t &= \beta E_t \left[m p n_{t+1} - w_{t+1} + (1 - s) \kappa x_{t+1} + \frac{\kappa}{2} x_t^2 \right] \end{aligned}$$

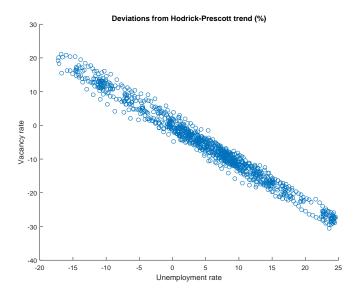
They also consider staggered (multi-period) wage contracts where only a fraction of previous wage contracts are renegotiated

Gertler & Trigari: Impulse response functions

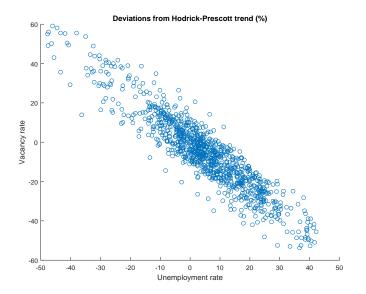


Monthly period frequency

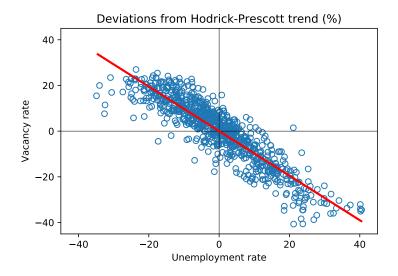
Gertler & Trigari: Beveridge curve (flexible wages)



Gertler & Trigari: Beveridge curve (staggered wages)



Beveridge curve: data



Gertler & Trigari: business cycle statistics

	у	w	ls	n	u	v	θ	a	i	С
	A. U.S. Economy, 1964:1–2005:1									
Relative standard deviation	1.00	.52	.51	.60	5.15	6.30	11.28	.61	2.71	.41
Autocorrelation	.87	.91	.73	.94	.91	.91	.91	.79	.85	.87
Correlation with y	1.00	.56	20	.78	86	.91	.90	.71	.94	.81
	B. Model Economy, $\lambda = 0$ (Flexible Wages)									
Relative standard deviation	1.00	.87	.09	.10	1.24	1.58	2.72	.93	3.11	.37
Autocorrelation	.81	.81	.58	.92	.92	.86	.90	.78	.80	.85
Correlation with y	1.00	1.00	54	.59	59	.98	.92	1.00	.99	.93
		C.	Model	Ecor	nomy,)	x = 8/	′9 (3 Q	uarter	s)	
Relative standard deviation	1.00	.56	.57	.35	4.44	5.81	9.84	.71	3.18	.35
Autocorrelation	.84	.95	.65	.90	.90	.82	.88	.76	.86	.86
Correlation with y	1.00	.66	56	.77	77	.91	.94	.97	.99	.90
		D. 1	Model]	Econ	omy, λ	= 11,	/12 (4	Quarte	ers)	
Relative standard deviation	1.00	.48	.58	.44	5.68	7.28	12.52	.64	3.18	.34
Autocorrelation	.85	.96	.68	.91	.91	.86	.90	.74	.88	.86
Correlation with y	1.00	.55	59	.78	78	.93	.95	.95	.99	.90

- After adding multi-period contracts, Gertler & Trigari obtain a very good empirical match of the RBC model with search & matching features
- This is one of the best matches for single-shock models
- Key to the success was
 - Convex vacancy posting
 - Staggered (multi-period) wage contracts

- Endogenous (non-constant) separation rate
- On-the-job search
- Hours per worker adjustments