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1 Ramsey-Cass-Koopmans (RCK) model
The RCK model is an extension of the Solow-Swan model, pioneered by Frank Ramsey (1928) and
extended by David Cass (1965) and Tjalling Koopmans (1965). Known also as the Neoclassical
Growth Model, it is a “workhorse” of modern macroeconomics and forms the basis of the majority of
modern works in economic growth and business cycles literature.

In the OLG model there were an infinite number of agents (since in every new period a new generation
entered the economy) and they had a finite time horizon. In the Ramsey model the agents solve a
problem with an infinite time horizon. This can be justified by the following argument. In the (basic)
OLG model parents are “selfish” and leave no assets to their children. However in the real world we see
that at least some individuals leave sizeable bequests and support their children financially throughout
their lives. This implies that parents care for their children’s “utility”.

In the RCK model it is assumed that parents care about their children as much as they care about
themselves. Moreover, both the labor and capital income are pooled within the household and split
equally across its members. Therefore, each household is in fact a “dynasty” of individuals with an
infinite planning horizon, and the welfare function of a household is constructed as follows:

U =
∞∑
t=0

βtu (ct)

where β is a discount factor and u (·) is an instantaneous utility function (felicity function).

Usually this felicity function is represented by a Constant Relative Risk Aversion (CRRA) function:

u (ct) = c1−σ
t − 1
1− σ

where σ > 0 regulates the degree of risk aversion.

Firms’ problem

The problem of the firms will be the same for both simplified and general cases. The firms want to hire
optimal quantities of labor and capital to maximize their profits:

max Πt = Kα
t (AtLt)1−α − wtLt − rktKt

First order conditions (FOCs):

∂Πt

∂Lt
= (1− α)Kα

t A
1−α
t L−αt − wt = 0

∂Πt

∂Kt
= αKα−1

t (AtLt)1−α − rkt = 0

Simplify the above expressions:

wt = (1− α)At
(

Kt

AtLt

)α
rkt = α

(
Kt

AtLt

)α−1

The above equations determine both the wage w and the capital rental rate rk as functions of capital
(per effective labor). The real interest rate is equal to the capital rental rate, less the capital depreciation
rate:

rt = rkt − δ
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1.1 Simplified model
We will first consider a RCK model with simplifying assumptions that yield an analytical solution, and
then consider a general case. For now, we will assume for simplicity that there is no population and
technology growth, and without loss of generality we can normalize A = 1, so that capital per effective
labor and capital per worker are equivalent. We will also assume total depreciation of capital (δ = 1)
and that the instantaneous utility function is logarithmic (σ = 1).

Households’ problem

The representative “dynasty” solves the following problem:

max U =
∞∑
t=0

βt ln ct

subject to ct + at+1 = wt + (1 + rt) at

Write down the Lagrangian:

L =
∞∑
t=0

βt ln ct +
∞∑
t=0

βtλt [wt + (1 + rt) at − ct − at+1]

Note that we have an infinity of time periods and Lagrange multipliers. Rewrite the Lagrangian so that
it is easier to take derivatives:

L = . . .+ βt ln ct + βtλt [wt + (1 + rt) at − ct − at+1]
. . .+ βt+1λt+1 [wt+1 + (1 + rt+1) at+1 − ct+1 − at+2] + . . .

In each period t we can choose period t consumption ct and end-of-period t assets at+1.

First order conditions (FOCs):

ct : ∂L
∂ct

= βt
1
ct

+ βtλt [−1] = 0 → λt = 1
ct

at+1 : ∂L
∂at+1

= βtλt [−1] + βt+1λt+1 [(1 + rt+1)] = 0 → λt = β (1 + rt+1)λt+1

Join conditions:

1
ct

= β (1 + rt+1) 1
ct+1

ct+1 = β (1 + rt+1) ct

We have obtained the standard Euler equation.

By using the Euler equation, the budget constraints and after some algebra the optimal consumpion in
period t can be expressed as:

ct = 1
1− β

[
(1 + rt) at +

∞∑
i=0

wt+i
1 + r̄t+i

]

where:

1 + r̄t+i =
{

1 for i = 0
(1 + rt+1) · . . . · (1 + rt+i) for i = 1, 2, . . .

As you can see, the optimal behavior of households requires them to formulate accurate forecasts of
prices w and r.
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General Equilibrium

The above solution of the households’ problem is still relatively general, as we haven’t made full use of
our simplifying assumptions yet. Consider now the general equilibrium, where all markets clear.

Since there is no government and no international trade, domestic capital is the only asset which can be
in positive net supply:

at = kt for all t

And the budget constraint of the households can be rewritten as:

ct + at+1 = wt + (1 + rt) at
ct + kt+1 = wt + (1 + rt) kt

We can also use the expressions for prices (recall that A = 1 and δ = 1):

wt = (1− α)At
(

Kt

AtLt

)α
= (1− α) kαt

rkt = α

(
Kt

AtLt

)α−1
= αkα−1

t

rt = rkt − δ = αkα−1
t − 1

And plug them into the budget constraint:

ct + kt+1 = (1− α) kαt +
(
1 + αkα−1

t − 1
)
kt

ct + kt+1 = (1− α) kαt + αkαt

ct + kt+1 = kαt

Closed-form solution

Finally, let us guess-and-verify that this economy behaves as a Solow-Swan economy, and the households
save a constant fraction s of their income:

kt+1 = syt = skαt

ct = (1− s) yt = (1− s) kαt

Use the Euler equation and the equation for the interest rate:

ct+1 = β (1 + rt+1) ct
ct+1 = βαkα−1

t+1 ct

(1− s) kαt+1 = βαkα−1
t+1 (1− s) kαt

kt+1 = βαkαt

Indeed, the saving rate is a constant:
s = αβ

Note that ∂s/∂β > 0 and that s ≤ α = sGR, with equality when β = 1 (households care just as much
about the future and the present). This implies that the RCK economy is never dynamically inefficient.

Under our assumptions, we can obtain an analytical, closed form solution of the RCK model:

ct = (1− αβ) kαt
kt+1 = αβkαt

Note that under these assumptions the households do not have to forecast future prices, which simplifies
greatly the solution procedure.
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Finally, let us find the steady state of the model:

k∗ = αβ (k∗)α

(k∗)1−α = αβ

k∗ = (αβ)1/(1−α)

c∗ = (1− αβ) (αβ)α/(1−α)

The first plot below illustrates the process of convergence to the steady state over time. Note that since
δ = 1, the convergence is very fast.

The second plot is a new type of plot, called a phase diagram, and will illustrate the convergence to the
steady state in the (k, c) space.
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The phase diagram shows a number of conditions. The first one, kt+1 = kt, describes a set of combi-
nations of k and c for which capital per worker does not change over time. We can find them via the
budget/resource constraint:

ct + kt+1 = kαt

ct = kαt − kt+1

If kt+1 = kt = k:
c = kα − k

The second condition, ct+1 = ct, describes a set of combinations of k and c for which consumption per
worker does not change over time. We can find them via the Euler equation:

ct+1 = β (1 + rt+1) ct
1 = β (1 + rt+1)

rt+1 = 1
β
− 1

αkα−1
t+1 − 1 = 1

β
− 1

kα−1
t+1 = 1

αβ

kt+1 = (αβ)1/(1−α) = k∗

That means that when the capital per worker is at its steady state level, ct+1 = ct for all c.

Obviously, the intersection of kt+1 = kt and ct+1 = ct is by definition the steady state of the model.

Finally, the “saddle path” is our model’s solution. Importantly, there is only one path that leads from
any possible level of capital per worker k to the steady state. This guarantees that the model has a
unique solution.
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1.2 Neoclassical Growth Model
We now turn to analyzing the full RCK/NGM model. Population grows at rate n, while technology
improves at rate g. The firms’ problem is the same as before. What is a bit different is the households’
problem.

Households’ problem

The representative “dynasty” solves the following problem:

max U =
∞∑
t=0

βt · c
1−σ
t − 1
1− σ

subject to ct + (1 + n) at+1 = wt + (1 + rt) at

Lagrangian:

L =
∞∑
t=0

βt
{
c1−σ
t − 1
1− σ + λt [wt + (1 + rt) at − ct − (1 + n) at+1]

}
Expand the Lagrangian:

L = . . .+ βt
c1−σ
t − 1
1− σ + βtλt [wt + (1 + rt) at − ct − (1 + n) at+1]

. . .+ βt+1λt+1 [wt+1 + (1 + rt+1) at+1 − ct+1 − (1 + n) at+2] + . . .

First order conditions (FOCs):

ct : ∂L
∂ct

= βtc−σt + βtλt [−1] = 0

at+1 : ∂L
∂at+1

= βtλt [− (1 + n)] + βt+1λt+1 [(1 + rt+1)] = 0

Simplify and rewrite:

λt = c−σt

(1 + n)λt = β (1 + rt+1)λt+1

Join conditions:

c−σt = β (1 + rt+1)
1 + n

c−σt+1(
ct+1

ct

)σ
= β (1 + rt+1)

1 + n

ct+1

ct
=
[
β (1 + rt+1)

1 + n

]1/σ

ct+1 =
[
β (1 + rt+1)

1 + n

]1/σ
ct

We have obtained the Euler equation. Note that if n = 0 and σ = 1, we go back to our usual form of
Euler equation.
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General Equilibrium

Again, since there is no government and no international trade, domestic capital is the only asset which
can be in positive net supply:

at = kt for all t

And the budget constraint of the households can be rewritten as:

ct + (1 + n) at+1 = wt + (1 + rt) at
ct + (1 + n) kt+1 = wt + (1 + rt) kt

We can also use the expressions for prices (but this time technology improves over time, so we make use
of per effective labor variables):

wt = (1− α)At
(

Kt

AtLt

)α
= (1− α)Atk̂αt

rkt = α

(
Kt

AtLt

)α−1
= αk̂α−1

t

rt = rkt − δ = αk̂α−1
t − δ

And plug them into the budget constraint:

ct + (1 + n) kt+1 = (1− α)Atk̂αt +
(

1 + αk̂α−1
t − δ

)
kt | : At

ĉt + (1 + n) kt+1

At
= (1− α) k̂αt +

(
1 + αk̂α−1

t − δ
)
k̂t

ĉt + (1 + n) At+1

At

kt+1

At+1
= (1− α) k̂αt + αk̂αt + (1− δ) k̂t

(1 + n) (1 + g) k̂t+1 = k̂αt − ĉt + (1− δ) k̂t

k̂t+1 = k̂αt − ĉt + (1− δ) k̂t
(1 + n) (1 + g)

The k̂αt − ĉt part represents gross investment, and is the analogue of sk̂αt in the Solow-Swan and OLG
models.

Plug in the interest rate into the Euler equation and rewrite it in per effective labor terms:

ct+1 =
(
β

1 + rt+1

1 + n

)1/σ
ct | : At

ct+1

At
=
(
β

1 + αk̂α−1
t+1 − δ

1 + n

)1/σ
ct
At

At+1

At

ct+1

At+1
=
(
β

1 + αk̂α−1
t+1 − δ

1 + n

)1/σ

ĉt

(1 + g) ĉt+1 =
(
β

1 + αk̂α−1
t+1 − δ

1 + n

)1/σ

ĉt

ĉt+1 =
(
β

1 + αk̂α−1
t+1 − δ

1 + n

)1/σ
ĉt

(1 + g)
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Steady state

If ĉt+1 = ĉt, then:

(1 + g) =
(
β

1 + αk̂α−1
t+1 − δ

1 + n

)1/σ

(1 + g)σ = β
1 + αk̂α−1

t+1 − δ
1 + n

(1 + g)σ (1 + n)
β

= 1 + αk̂α−1
t+1 − δ

αk̂α−1
t+1 = (1 + g)σ (1 + n)

β
− (1− δ)

k̂α−1
t+1 = (1 + g)σ (1 + n)− β (1− δ)

αβ

k̂∗ =
[

αβ

(1 + g)σ (1 + n)− β (1− δ)

]1/(1−α)

Note that if β = 1 and σ = 1, then we can express k̂∗ as:

k̂∗ =
[

α

(1 + g) (1 + n)− (1− δ)

]1/(1−α)
=
[

α

δ + n+ g + ng

]1/(1−α)

which is equivalent to the Solow-Swan model solution, given that the saving rate is at its golden rule level.

If k̂t+1 = k̂t = k̂, then:

(1 + n) (1 + g) k̂t+1 = k̂αt − ĉt + (1− δ) k̂t
(1 + n) (1 + g) k̂ = k̂α − ĉ+ (1− δ) k̂

ĉ = k̂α + (1− δ) k̂ − (1 + n) (1 + g) k̂
ĉ = k̂α − (δ + n+ g + ng) k̂

And the steady state level of consumption per effective labor is given by:

ĉ∗ = (k̂∗)α − (δ + n+ g + ng) k̂∗

Transition dynamics (saddle path)

Along the transition to the steady state, the model variables have to obey the following conditions:

k̂t+1 = k̂αt − ĉt + (1− δ) k̂t
(1 + n) (1 + g)

ĉt+1 =
(
β

1 + αk̂α−1
t+1 − δ

1 + n

)1/σ
ĉt

(1 + g)

Solving the RCK model is equivalent to finding, for some initial level of capital per effective labor k̂0,
such ĉ0 that the above forward equations bring k̂ and ĉ to the steady state.

Since the general formulation of the model yields no closed-form solution, the saddle path can be found
by using one of many numerical solution procedures. A very simple numerical procedure is the shooting
algorithm.
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2 Optimal taxation in the long run
For simplicity, we will assume n = g = 0 and N = A = 1. We will consider two uses for the taxes: lump-
sum transfers to households v and useless from the point of view of households government consumption g
(note the notation change!). We assume that in each period the government’s budget is balanced.

Households

Utility maximization problem:

max U0 =
∞∑
t=0

βt
c1−σ
t − 1
1− σ

subject to at+1 = (1 + (1− τat ) rt) at + (1− τwt )wt − (1 + τ ct ) ct − τt + vt

where τa is capital gains tax, τw is labor income tax, τ c is consumption tax and τ is lump-sum tax.

Lagrangian:

L =
∞∑
t=0

βt
{
c1−σ
t − 1
1− σ + λt [(1 + (1− τat ) rt) at + (1− τwt )wt − (1 + τ ct ) ct − τt + vt − at+1]

}
FOCs:

ct : βt
{
c−σt − λt (1 + τ ct )

}
= 0 → λt = c−σt

1 + τ ct

at+1 : −βtλt + βt+1λt+1
(
1 +

(
1− τat+1

)
rt+1

)
= 0

Euler equation:

c−σt
1 + τ ct

= β
c−σt+1

1 + τ ct+1

(
1 +

(
1− τat+1

)
rt+1

)
(
ct+1

ct

)σ
= 1 + τ ct

1 + τ ct+1
β
(
1 +

(
1− τat+1

)
rt+1

)
Firms

Profit maximizing problem:

max Πt = (1− τft )
[
Kα
t L

1−α
t − δKt − wtLt

]
− rtKt

where τf is firm earnings tax.

FOCs:

Kt : (1− τft )
[
αKα−1

t L1−α
t − δ

]
− rt = 0 → rt = (1− τft )

(
αkα−1

t − δ
)

Lt : (1− τft )
[
(1− α)Kα

t L
−α
t − wt

]
= 0 → wt = (1− α) kαt

The tax on firm’s earnings lowers the return on capital and incentivises firms to hold less capital.

Firm earnings tax revenue is equal to:

τft
[
Kα
t L

1−α
t − δKt − wtLt

]
= Lt · τft [kαt − δkt − (1− α) kαt ] = Lt · τft (αkαt − δkt)

Government sector

The government maintains balanced budget. In per capita terms:

gt + vt = τft (αkαt − δkt) + τat rtat + τ ct ct + τwt wt + τt

vt = τft (αkαt − δkt) + τat rtat + τ ct ct + τwt wt + τt − gt
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General equilibrium

Market clearing for capital:
kt = at

Rewrite households’ budget constraint to get capital accumulation equation:

kt+1 = (1 + (1− τat ) rt) kt + (1− τwt )wt − (1 + τ ct ) ct − τt + vt

kt+1 = (1 + rt) kt + wt − ct − (τat rtkt + τwt wt + τ ct ct + τt − vt)

kt+1 =
[
1 + (1− τft )

(
αkα−1

t − δ
)]
kt + (1− α) kαt − ct −

[
gt − τft (αkαt − δkt)

]
kt+1 =

[
1 + αkα−1

t − δ
]
kt + (1− α) kαt − ct − gt

kt+1 = kαt + (1− δ) kt − ct − gt

Rewrite the Euler equation:(
ct+1

ct

)σ
= 1 + τ ct

1 + τ ct+1
β
[
1 +

(
1− τat+1

)
(1− τft+1)

(
αkα−1

t − δ
)]

Steady state

Assume constant tax rates:

1 = β
[
1 + (1− τa) (1− τf )

(
αkα−1 − δ

)]
1
β
− 1 = (1− τa) (1− τf )

(
αkα−1 − δ

)
ρ

(1− τa) (1− τf ) =
(
αkα−1 − δ

)
αkα−1 = ρ

(1− τa) (1− τft )
+ δ

k∗ =

 α

ρ/
[
(1− τa) (1− τft )

]
+ δ

1/(1−α)

kt+1 = kt = k∗ → c∗ = (k∗)α − δk∗ − g

Government consumption lowers private consumption but does not affect steady state capital per worker.

Capital gains and firm earnings taxes lower steady state capital per worker which then translates to
lower steady state private consumption.

2.1 Chamley (1986)-Judd (1985): redistribution impossibility theorem
Again assume n = g = 0 and N = A = 1 for simplicity. Divide population into two groups: workers and
capitalists. Workers do not save and consume their wages and any transfers they receive. Capitalists
both save and consume. The government wants to redistribute between capitalists and workers. It levies
tax on capital gains and distributes the proceeds to workers.

Worker households

max Uw0 =
∞∑
t=0

βt
(cwt )1−σ − 1

1− σ

subject to cwt = wt + vt

Solution:
cwt = wt + vt
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Capitalist households

max U c0 =
∞∑
t=0

βt
(cct)

1−σ − 1
1− σ

subject to at+1 = (1 + (1− τa) rt) at − cct

Solution: (
cct+1
cct

)σ
= β (1 + (1− τa) rt+1)

Firms

max Πt = Kα
t L

1−α
t − wtLt − rktKt

Solution:

rkt = αKα−1
t L1−α

t → rt = αkα−1
t − δ

wt = (1− α)Kα
t L
−α
t = (1− α) kαt

Government sector

Nwvt = N cτart+1at+1

General equilibrium

Capital market equilibrium:
Nwkt = N cat → vt = τart+1kt+1

Steady state capital per worker:

1 = β
(
1 + (1− τa)

(
αkα−1 − δ

))
αkα−1 = ρ

1− τa + δ

k =
(

α

ρ/ (1− τa) + δ

)1/(1−α)

Steady state workers’ consumption:

cw = (1− α) kα + τa
(
αkα−1 − δ

)
k

For an easy proof, let us assume that δ = 0:

cw = (1− α) kα + τaαkα = (1− α+ ατa)
(
α (1− τa)

ρ

) α
1−α

ln cw = ln (1− α+ ατa) + α

1− α (lnα+ ln (1− τa)− ln ρ)

∂ ln cw

∂τa
= α

1− α+ ατa
+ α

1− α

(
− 1

1− τa

)
= α

1− α+ ατa
− α

1− α+ ατa − τa
< 0

It turns out that it is impossible to increase steady state consumption of workers by taxing capitalists.
Taxing capitalists reduces steady state capital stock and lowers wages. Even if all of the revenue from
taxation is given to workers in transfer, the loss in wages is greater than the gain from the transfer.

See here for conditions under which the above result might not hold. For example, Aiyagari (1995) and
Chamley (2001) show that under incomplete markets and borrowing constraints, the optimal long-run
capital gains tax rate is positive. Also, Straub and Werning (2014) show that the Chamley-Judd
result depends critically on whether the economy actually converges to the steady state discussed above.
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