

University of Warsaw Faculty of Economic Sciences

Introduction to modern macroeconomics

Advanced Macroeconomics QF: Lecture 1

Marcin Bielecki

Academic Year 2018/2019

University of Warsaw

Course organization

- Website: http://coin.wne.uw.edu.pl/mbielecki/
 → Advanced Macroeconomics QF
 - Lecture slides and/or notes available on Monday prior to the lecture
- E-mail: mbielecki@wne.uw.edu.pl
- Office hours: Fridays, by appointment

Assessment

You will be graded on the basis of

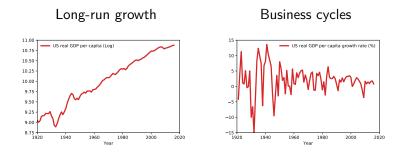
- Final exam (70%), consisting of two parts
 - Open questions (30%): you will answer to 3 out of 4 questions
 - Problems (40%): you will solve 2 out of 3 problems
- Homeworks (30%)
 - There will be 5 problem sets and you will be given 2 weeks to hand in the solutions

Points from the final exam and homeworks add up

You need at least 50% to pass the course

Score	[0, 50)	[50, 60)	[60, 70)	[70, 80)	[80, 90)	[90, 100]
Grade	2	3	3.5	4	4.5	5

We want to understand the mechanisms behind



using the tools of modern macroeconomics

Course overview

- Microfoundations (3 lectures)
 - Introduction to modern macroeconomics
 - Consumption
 - Investment
- Economic growth (4 lectures)
 - Growth facts. Solow-Swan model
 - Ramsey-Cass-Koopmans model
 - Overlapping Generations model
 - Endogenous growth models
- Business cycles (6 lectures)
 - Business cycle facts. Real Business Cycles model
 - Models of unemployment
 - Incomplete markets models. Inequality
 - New Keynesian model
 - Monetary policy design
 - Financial frictions. Great Recession

Questions?

Modern macroeconomics

- Why is it so different from your previous macro courses?
- Cornerstone of "modern" (post-1970s) macroeconomics

Macroeconomics is microeconomics

(at a high level of aggregation)

¹This section heavily borrows from Lutz Hendricks.

An "old" macroeconomic model

- Consumption function: $C = C_0 + cY$
- Investment function: $I = I_0 bi$
- Identity: Y = C + I + G
- IS curve:

$$(1-c) Y = C_0 + I_0 + G - bi$$

- Real money demand: $L = L_0 + kY hi$
- Real money supply: M/P
- LM curve:

$$M/P = L_0 + kY - hi$$

- Government spending always raises output
 - Supply side constraints are missing
- Consuming more / saving less always raises output
 - The model lacks capital
- Behavior depends on parameters: c, b, k, h and C_0, I_0, L_0
 - Which parameters are stable?
 - Can policy affect these parameters?
- Expectations are not modeled

- Behavior of agents is **derived** from the solutions to their optimization problems
 - Often involving time and uncertainty
- Agents have model-consistent endogenous expectations
- Aggregate outcomes result from individual decisions
- The economy is in general equilibrium
 - Which does not mean it is "at rest"
 - Nor that the outcomes are desirable

What do we gain from this approach?

- Consistency
 - Aggregate relationships satisfy all individual constraints
- Transparency
 - Assumptions about the fundamentals are clearly stated
- Non-arbitrary behavior
 - In old macro, results depend on the assumed behavior
 - In modern macro, behavior is derived
- Testability
 - Models can be tested against both macro and micro data
- Welfare analysis
 - It is possible to evaluate how a policy change affects the welfare (utility) of each agent

Step 1: Describe the economy

- List the agents (households, firms, governments)
- For each agent define
 - Demographics: population grows at rate n
 - Preferences: households maximize utility u(c)
 - Endowments: each household has one unit of time
 - Technologies: output is produced using f(k)
- Define the markets in which agents interact
 - Households work for firms (labor market)
 - Households purchase goods from firms (goods market)

Step 2: Solve each agent's problem

- Write down the maximization problem each agent solves
 - Households maximize utility, subject to the budget constraint
 - Firms maximize profits, subject to the production function
- Derive a set of equations that determine the agent's choice
 - Households' consumption and saving functions
 - Firms' demands for factors of production

How to build a model in 4 simple steps

Step 3: Market clearing

- For each market, calculate supply and demand by each agent
- Aggregate supply = \sum individual supplies (same for demand)
- Aggregate supply = Aggregate demand

Step 4: Define the equilibrium

- Collect all endogenous objects
 - Consumption, output, wage rate, ...
- Collect all equations
 - First order conditions, market clearing conditions
- You should have N equations to solve for N variables
 - Quantities and prices

- We will not consider these general equilibrium models in the first couple of lectures
- First, let us focus on getting comfortable with Steps 1 and 2
- Very similar to the partial equilibrium approach in micro

Example 1: One period, two goods

Step 1: Describe the economy

- Agents and their demographics
 - A household who lives for one period
- Preferences
 - The household values consumption of two goods with preferences described by the utility function U(c₁, c₂)
- Endowments
 - The household receives endowments of two goods (y_1, y_2)
- Technology
 - There is no production, but goods can be traded
- Markets
 - There are competitive markets for the two goods
 - The prices of the two goods are p_1 and p_2

- The household maximizes $U(c_1, c_2)$ subject to the budget constraint
- The household takes as given the following state variables
 - Market prices for the two goods, p₁ and p₂
 - Endowments y₁ and y₂
- The choice variables are c₁ and c₂
- We can normalize the price of good 1 to unity: $p_1 = 1$ and call the relative price $p \equiv p_2/p_1$

- Budget constraint: Value of consumption ≤ Value of endowments
- The household solves the problem

$$ext{max} \quad U\left(c_{1},c_{2}
ight)$$
subject to $ext{ } c_{1}+pc_{2}\leq y_{1}+py_{2}$

- A solution to the problem is the pair (c_1, c_2) conditional on the relative price p and endowments (y_1, y_2)
 - Can I replace the symbol "≤" with "="?
 - Ideas on how to solve this problem?

- Many good approaches to solving such simple problems
- Fewer good approaches when problems get more complex
- One tool to rule them all Lagrange function (Lagrangian)

Solving the household's problem

• Set up the Lagrangian

$$\mathcal{L} = U(c_1, c_2) + \lambda \left[y_1 + p y_2 - c_1 + p c_2
ight]$$

• Derive the first order conditions (FOCs)

$$\frac{\partial \mathcal{L}}{\partial c_1} = \frac{\partial U(c_1, c_2)}{\partial c_1} - \lambda = 0$$
(1)

$$\frac{\partial \mathcal{L}}{\partial c_2} = \frac{\partial \mathcal{O}(c_1, c_2)}{\partial c_2} - \lambda p = 0$$
(2)

The Lagrange multiplier λ has a useful interpretation

- It is the marginal utility of relaxing the constraint a bit
- In this example λ is the marginal utility of wealth
- The solution is then a vector (c_1, c_2, λ) that satisfies
 - FOCs (1), (2) and the budget constraint $c_1 + pc_2 = y_1 + py_2$

- It is convenient to substitute out the Lagrange multiplier $\boldsymbol{\lambda}$
- The ratio of the FOCs implies

$$\frac{\partial U(c_1, c_2) / \partial c_2}{\partial U(c_1, c_2) / \partial c_1} \equiv \frac{U_2}{U_1} = p \tag{3}$$

- This is the familiar tangency condition
 - marginal rate of substitution equals relative price
- Now the solution is a pair (c₁, c₂) that satisfies (3) and the budget constraint c₁ + pc₂ = y₁ + py₂

• Assume logarithmic utility

$$U(c_1,c_2) = \ln c_1 + \beta \ln c_2$$

• The FOCs are

$$\frac{\partial \mathcal{L}}{\partial c_1} = \frac{1}{c_1} - \lambda = 0 \qquad \rightarrow \qquad \lambda = \frac{1}{c_1}$$
$$\frac{\partial \mathcal{L}}{\partial c_2} = \beta \frac{1}{c_2} - \lambda p = 0 \qquad \rightarrow \qquad \lambda p = \beta \frac{1}{c_2}$$

• Ratio of FOCs

$$p = \beta \frac{c_1}{c_2} \quad \rightarrow \quad c_2 = \frac{\beta}{p} c_1$$

• Ratio of FOCs

$$c_2 = \frac{\beta}{p}c_1$$

• Plug into the budget constraint

$$c_1 + pc_2 = y_1 + py_2$$

 $c_1 + \beta c_1 = y_1 + py_2$

• Optimal consumption levels

$$c_1=rac{y_1+py_2}{1+eta}$$
 and $c_2=rac{eta}{p}rac{y_1+py_2}{1+eta}$

Example 2: Two periods, one good

Step 1: Describe the economy

- Agents and their demographics
 - A household who lives for two periods
- Preferences
 - The household values consumption in two **time periods** with preferences described by the utility function $U(c_1, c_2)$
- Endowments
 - The household receives income in two time periods (y_1, y_2)
- Technology
 - There is no production, but the agent can save or borrow
- Markets
 - There is a competitive **financial market**: one unit of first period good saved delivers (1 + r) units of second period good
 - First period good costs 1, second period good costs $1/\left(1+r
 ight)$

• The household maximizes

$$U(c_1, c_2) = \ln c_1 + \beta \ln c_2$$

subject to the budget constraint

$$c_1 + \frac{c_2}{1+r} = y_1 + \frac{y_2}{1+r}$$

- The household takes the following state variables as given
 - Interest rate r
 - Incomes y₁ and y₂
- The choice variables are c_1 and c_2

Solving the household's problem

• Set up the Lagrangian

$$\mathcal{L} = \ln c_1 + \beta \ln c_2 + \lambda \left[y_1 + \frac{y_2}{1+r} - c_1 - \frac{c_2}{1+r} \right]$$

• Derive the first order conditions (FOCs)

$$\frac{\partial \mathcal{L}}{\partial c_1} = \frac{1}{c_1} - \lambda = 0$$
$$\frac{\partial \mathcal{L}}{\partial c_2} = \beta \frac{1}{c_2} - \lambda \frac{1}{1+r} = 0$$

• Simplify

$$\lambda = rac{1}{c_1}$$
 and $\lambda = eta \left(1 + r
ight) rac{1}{c_2}$

• Obtain the intertemporal condition / Euler equation

$$\frac{1}{c_1} = \beta \left(1+r\right) \frac{1}{c_2} \quad \iff \quad c_2 = \beta \left(1+r\right) c_1$$

Solving the household's problem

• Obtain the intertemporal condition / Euler equation

$$c_2 = \beta \left(1 + r \right) c_1$$

• Combine it with the budget constraint

$$c_{1} + \frac{c_{2}}{1+r} = y_{1} + \frac{y_{2}}{1+r}$$

$$c_{1} + \frac{\beta (1+r) c_{1}}{1+r} = y_{1} + \frac{y_{2}}{1+r}$$

$$c_{1} + \beta c_{1} = y_{1} + \frac{y_{2}}{1+r}$$

• Optimal consumption levels

$$c_1 = \frac{1}{1+\beta} \left[y_1 + \frac{y_2}{1+r} \right]$$
$$c_2 = \frac{\beta}{1+\beta} \left[(1+r) y_1 + y_2 \right]$$