Monopolistic competition. Price stickiness New Keynesian model. Monetary policy

Advanced Macroeconomics IE: Lecture 19

Marcin Bielecki
Spring 2019
University of Warsaw

Monopolistic competition: introduction

- Most (if not all) sectors of the economy are not perfectly competitive
- There is a significant markup on prices, averaging around 33%
- Monopolistic competition allows us to introduce a new shock
- Is a stepping stone for nominal frictions models

Empirical evidence on markups

Christopoulou and Vermeulen (2008) Markups in the Euro Area and the US over the period 1981-2004: a comparison of 50 sectors

Table 1. Weighted average markup, 1981-2004

					All Manufacturing,	
Country	Manufacturing \& Construction		Market Services	 Market Services)		
Germany	1.16	$(0.01)^{*}$	1.54	$(0.03)^{*}$	1.33	$(0.01)^{*}$
France	1.15	$(0.01)^{*}$	1.26	$(0.02)^{*}$	1.21	$(0.01)^{*}$
Italy	1.23	$(0.01)^{*}$	1.87	$(0.02)^{*}$	1.61	$(0.01)^{*}$
Spain	1.18	$(0.00)^{*}$	1.37	$(0.01)^{*}$	1.26	$(0.01)^{*}$
Netherlands	1.13	$(0.01)^{*}$	1.31	$(0.02)^{*}$	1.22	$(0.01)^{*}$
Belgium	1.14	$(0.00)^{*}$	1.29	$(0.01)^{*}$	1.22	$(0.01)^{*}$
Austria	1.20	$(0.02)^{*}$	1.45	$(0.03)^{*}$	1.31	$(0.02)^{*}$
Finland	1.22	$(0.01)^{*}$	1.39	$(0.02)^{*}$	1.28	$(0.01)^{*}$
Euro Area	1.18	$(0.01)^{*}$	1.56	$(0.01)^{*}$	1.37	$(0.01)^{*}$
USA	1.28	$(0.02)^{*}$	1.36	$(0.03)^{*}$	1.32	$(0.02)^{*}$

Monopolistic competition: setup

- Two sectors of producers - final and intermediate goods
- Final goods sector is perfectly competitive
- Intermediate goods sector is monopolistically competitive and produces differentiated goods
- There is a degree of market power captured by $\mu \geq 1$
- If $\mu=1$ then we are in perfect competition
- Higher μ indicates higher monopoly power
- Final goods production function expressed as Dixit-Stiglitz aggregator

$$
\begin{aligned}
& y_{t}=\left(\sum_{i} y_{t}(i)^{1 / \mu}\right)^{\mu} \\
& y_{t}=\left(\int_{0}^{1} y_{t}(i)^{1 / \mu} \mathrm{d} i\right)^{\mu}
\end{aligned}
$$

- For small μ goods are close substitutes
- For large μ goods are complementary

Final goods producing firm I

Profit maximization problem

$$
\begin{aligned}
\max & P_{t} y_{t}-\int_{0}^{1} P_{t}(i) y_{t}(i) \mathrm{d} i \\
\text { subject to } & y_{t}=\left(\int_{0}^{1} y_{t}(i)^{\frac{1}{\mu}} \mathrm{~d} i\right)^{\mu}
\end{aligned}
$$

Lagrangian

$$
\mathcal{L}=P_{t} y_{t}-\int_{0}^{1} P_{t}(i) y_{t}(i) d i+\lambda_{t}\left[\left(\int_{0}^{1} y_{t}(i)^{\frac{1}{\mu}} \mathrm{~d} i\right)^{\mu}-y_{t}\right]
$$

FOCs

$$
\begin{aligned}
y_{t} & : \quad P_{t}-\lambda_{t}=0 \\
y_{t}(i) & : \quad-P_{t}(i)+\lambda_{t}\left[\mu\left(\int_{0}^{1} y_{t}(i)^{\frac{1}{\mu}} d i\right)^{\mu-1} \cdot \frac{1}{\mu} y_{t}(i)^{\frac{1}{\mu}-1}\right]=0
\end{aligned}
$$

Final goods producing firm II

Result

$$
\begin{aligned}
P_{t}(i) & \left.=P_{t}\left(\int_{0}^{1} y_{t}(i)^{\frac{1}{\mu}} d i\right)^{\mu-1} y_{t}(i)^{\frac{1-\mu}{\mu}} \quad \right\rvert\, \quad(\cdot)^{\frac{\mu}{\mu-1}} \\
P_{t}(i)^{\frac{\mu}{\mu-1}} & =P_{t}^{\frac{\mu}{\mu-1}}\left(\int_{0}^{1} y_{t}(i)^{\frac{1}{\mu}} d i\right)^{\mu} y_{t}(i)^{-1} \\
y_{t}(i) & =\left(\frac{P_{t}}{P_{t}(i)}\right)^{\frac{\mu}{\mu-1}} y_{t} \\
y_{t}(i) & =\left(\frac{P_{t}(i)}{P_{t}}\right)^{\frac{\mu}{1-\mu}} y_{t}
\end{aligned}
$$

Aggregate price index derivation

$$
P_{t}=\left(\int_{0}^{1} P_{t}(i)^{\frac{1}{1-\mu}} \mathrm{d} i\right)^{1-\mu}
$$

Intermediate goods producing firm (simplified) I

For now let's consider production function linear in hours

$$
y_{t}(i)=z_{t} h_{t}(i)
$$

Cost minimization problem

$$
\begin{aligned}
\min & t c_{t}(i)=w_{t} h_{t}(i) \\
\text { subject to } & y_{t}(i)=z_{\mathrm{t}} h_{t}(i)
\end{aligned}
$$

Lagrangian

$$
\mathcal{L}=-w_{t} h_{t}(i)+m c_{t}(i)\left(z_{t} h_{t}(i)-y_{t}(i)\right)
$$

FOC

$$
h_{t}(i):-w_{t}+m c_{t}(i) z_{t}=0
$$

Marginal cost is identical across firms

$$
m c_{t}(i)=m c_{t}=\frac{w_{t}}{z_{t}}
$$

Intermediate goods producing firm (simplified) II

Profit maximization problem

$$
\begin{aligned}
\max & \frac{P_{t}(i)}{P_{t}} y_{t}(i)-m c_{t} y_{t}(i) \\
\text { subject to } & y_{t}(i)=\left(\frac{P_{t}(i)}{P_{t}}\right)^{\frac{\mu}{1-\mu}} y_{t}
\end{aligned}
$$

Rewrite

$$
\max \quad P_{t}(i)^{1+\frac{\mu}{1-\mu}} P_{t}^{1+\frac{\mu}{\mu-1}} y_{t}-m c_{t} P_{t}(i)^{\frac{\mu}{1-\mu}} P_{t}^{\frac{\mu}{\mu-1}} y_{t}
$$

FOC

$$
\begin{gathered}
\left(\frac{1}{1-\mu}\right) P_{t}(i)^{\frac{\mu}{1-\mu}} P_{t}^{1+\frac{\mu}{\mu-1}} y_{t}-m c_{t}\left(\frac{\mu}{1-\mu}\right) P_{t}(i)^{\frac{\mu}{1-\mu}-1} P_{t}^{\frac{\mu}{\mu-1}} y_{t}=0 \\
P_{t}(i)=\mu \cdot m c_{t} \cdot P_{t}
\end{gathered}
$$

Identical marginal costs \rightarrow identical prices (and we normalize $P=1$)

$$
1=\mu m c_{t} \quad \rightarrow \quad m c_{t}=\frac{1}{\mu} \quad \text { and } \quad w_{t}=\frac{z_{t}}{\mu}
$$

Intermediate goods producing firm

In the case of prodiction function with capital

$$
y_{t}(i)=z_{t} k_{t}(i)^{\alpha} h_{t}(i)^{1-\alpha}
$$

we get

$$
m c_{t}=\frac{1}{\mu}
$$

and

$$
\begin{aligned}
w_{t} & =\frac{(1-\alpha)}{\mu} z_{\mathrm{t}} k_{\mathrm{t}}(i)^{\alpha} h_{\mathrm{t}}(i)^{-\alpha} \\
r_{\mathrm{t}} & =\frac{\alpha}{\mu} z_{\mathrm{t}} k_{\mathrm{t}}(i)^{\alpha-1} h_{\mathrm{t}}(i)^{1-\alpha}-\delta
\end{aligned}
$$

- The rest of the model is unchanged relative to the basic RBC model
- We will introduce shocks to vary market power parameter over time

Full set of equilibrium conditions

System of 9 equations and 9 unknowns: $\{c, h, y, r, w, k, i, z, \mu\}$

$$
\begin{equation*}
\text { Euler equation : } 1=\beta E_{t}\left[\frac{c_{t}}{c_{t+1}}\left(1+r_{t+1}\right)\right] \tag{1}
\end{equation*}
$$

Cons.-hours choice : $h_{t}=1-\phi \frac{c_{t}}{w_{t}}$
Prod. function : $y_{t}=z_{t} k_{t}^{\alpha} h_{t}^{1-\alpha}$
Real interest rate : $r_{t}=\frac{\alpha}{\mu_{t}} z_{t} k_{t}^{\alpha-1} h_{t}^{1-\alpha}-\delta$
Real hourly wage : $\quad w_{t}=\frac{(1-\alpha)}{\mu_{t}} z_{\mathrm{t}} k_{\mathrm{t}}^{\alpha} h_{\mathrm{t}}^{-\alpha}$

$$
\begin{equation*}
\text { Investment : } i_{t}=k_{t+1}-(1-\delta) k_{t} \tag{5}
\end{equation*}
$$

Output accounting : $y_{t}=c_{t}+i_{t}$
TFP process : $\ln z_{t}=\rho \ln z_{t-1}+\varepsilon_{t}$
Markup process : $\ln \mu_{t}=\left(1-\rho_{\mu}\right) \ln \mu+\rho_{\mu} \ln \mu_{t-1}+\varepsilon_{\mu, t}$

Steady state

- The only thing to be careful about is the monopoly wedge
- Other than that steady state is identical to the basic RBC case
(8) $z=1$
(9) $\mu=\mu$
(1) $r=1 / \beta-1$
(4) $\frac{k}{h}=\left(\frac{\alpha / \mu}{r+\delta}\right)^{\frac{1}{1-\alpha}}$
(3) $\frac{y}{h}=\left(\frac{k}{h}\right)^{\alpha}$
(5) $\quad w=\frac{(1-\alpha)}{\mu} \frac{y}{h}$
(6) $\frac{i}{h}=\delta \frac{k}{h}$
(7) $\frac{c}{h}=\frac{y}{h}-\frac{i}{h}$
(2) $\quad h=\left(1+\frac{\phi}{w} \frac{c}{h}\right)^{-1}$

Parameters

From the consumption-labor choice and wage equations we get

$$
\begin{gathered}
\ln \left(1-h_{t}\right)=\ln \phi+\ln c_{t}-\left(-\ln \mu_{t}+\ln (1-\alpha)+\ln y_{t}-\ln h_{t}\right) \\
\ln \mu_{t}=-\ln \phi+\ln (1-\alpha)+\ln \left(1-h_{t}\right)-\ln h_{t}+\ln y_{t}-\ln c_{t}
\end{gathered}
$$

All variables on the RHS are observable. The result is plotted below

Regression on the above markup implies $\rho_{\mu}=0.99$ and $\varepsilon_{\mu}=0.011$

Model comparison

	Rel. S. D.			Corr. w. y			Autocorr.		
	Data	RBC	MC	Data	RBC	MC	Data	RBC	MC
y	1.00	1.00	1.00	1.00	1.00	1.00	0.85	0.72	0.73
c	0.53	0.38	0.38	0.78	0.94	0.63	0.82	0.78	0.82
i	2.75	3.11	4.99	0.76	0.99	0.96	0.87	0.71	0.71
h	1.00	0.44	1.09	0.80	0.98	0.85	0.91	0.71	0.72
w	0.55	0.58	0.71	0.08	0.99	0.99	0.68	0.74	0.76
$\frac{y}{h}$	0.60	0.58	0.59	0.44	0.99	0.13	0.71	0.74	0.74
μ	1.08	-	0.88	-0.48	-	-0.72	0.83	-	0.72

Monopolistic competition - summary

- Introduction of second shock reduces model's reliance on TFP
- It improves hours volatility by a lot
- Markup shock does not have a good economic interpretation
- May be a result of many factors unrelated to monopoly power \rightarrow increases sharply in recessions
- Chari, Kehoe, and McGrattan (2007) perform "business cycle accounting", where they identify "wedges" (residuals) from the first order conditions of a very basic RBC model
- We have just obtained the measure for the labor wedge

Aggregate price index derivation

Perfect competition in the final goods sector implies

$$
\begin{aligned}
P_{t} y_{t} & =\int_{0}^{1} P_{t}(i) y_{t}(i) \mathrm{d} i \\
P_{t} y_{t} & =\int_{0}^{1} P_{t}(i)\left(\frac{P_{t}(i)}{P_{t}}\right)^{\frac{\mu}{1-\mu}} y_{t} \mathrm{~d} i \\
P_{t} y_{t} & =P_{t}^{-\frac{\mu}{1-\mu}} y_{t} \cdot \int_{0}^{1} P_{t}(i)^{1+\frac{\mu}{1-\mu}} \mathrm{d} i \\
P_{t}^{1+\frac{\mu}{1-\mu}} & =\int_{0}^{1} P_{t}(i)^{\frac{1}{1-\mu}} \mathrm{d} i \\
P_{t} & =\left(\int_{0}^{1} P_{t}(i)^{\frac{1}{1-\mu}} \mathrm{d} i\right)^{1-\mu}
\end{aligned}
$$

Marginal cost for production function with capital I

Cost minimization problem

$$
\begin{aligned}
\min & t c_{t}(i)=w_{t} h_{t}(i)+r_{t}^{k} k_{t}(i) \\
\text { subject to } & y_{t}(i)=z_{t} k_{t}(i)^{\alpha} h_{t}(i)^{1-\alpha}
\end{aligned}
$$

Lagrangian

$$
\mathcal{L}=-\left(w_{t} h_{t}(i)+r_{t}^{k} k_{t}(i)\right)+m c_{t}(i)\left(z_{t} k_{t}(i)^{\alpha} h_{t}(i)^{1-\alpha}-y_{t}(i)\right)
$$

FOCs

$$
\begin{array}{ll}
h_{t}(i): & w_{t}=m c_{t}(i)(1-\alpha) z_{t} k_{t}(i)^{\alpha} h_{t}(i)^{-\alpha} \\
k_{t}(i): & r_{t}^{k}=m c_{t}(i) \alpha z_{t} k_{t}(i)^{\alpha-1} h_{t}(i)^{1-\alpha}
\end{array}
$$

Divide

$$
\frac{w_{t}}{r_{t}^{k}}=\frac{1-\alpha}{\alpha} \frac{k_{t}(i)}{h_{t}(i)} \rightarrow \frac{k_{t}(i)}{h_{t}(i)}=\frac{\alpha}{1-\alpha} \frac{w_{t}}{r_{t}^{k}} \quad \rightarrow \quad h_{t}(i)=\frac{1-\alpha}{\alpha} \frac{r_{t}^{k}}{w_{t}} k_{t}(i)
$$

All firms have identical k / h ratio

Marginal cost for production function with capital II

Production function

$$
\begin{aligned}
y_{t}(i) & =z_{t} k_{t}(i)^{\alpha} h_{t}(i)^{1-\alpha}=z_{t} k_{t}(i)^{\alpha}\left(\frac{r_{t}^{k}}{w_{t}} \frac{1-\alpha}{\alpha} k_{t}(i)\right)^{1-\alpha} \\
& =z_{t} k_{t}(i)\left(\frac{r_{t}^{k}}{w_{t}} \frac{1-\alpha}{\alpha}\right)^{1-\alpha} \rightarrow \quad k_{t}(i)=\frac{y_{t}(i)}{z_{t}}\left(\frac{r_{t}^{k}}{w_{t}} \frac{1-\alpha}{\alpha}\right)^{\alpha-1}
\end{aligned}
$$

Total cost

$$
\begin{aligned}
t c_{t}(i) & =w_{t} h_{t}(i)+r_{t}^{k} k_{t}(i)=\frac{\alpha}{1-\alpha} r_{t}^{k} k_{t}(i)+r_{t}^{k} k_{t}(i) \\
& =\left(\frac{1-\alpha}{\alpha}+1\right) r_{t}^{k} k_{t}(i)=\frac{1}{\alpha} r_{t}^{k} k_{t}(i) \\
& =\frac{1}{\alpha} r_{t}^{k} \frac{y_{t}(i)}{z_{t}}\left(\frac{r_{t}^{k}}{w_{t}} \frac{1-\alpha}{\alpha}\right)^{\alpha-1}=\frac{y_{t}(i)}{z_{t}} \frac{\left(r_{t}^{k}\right)^{\alpha} w_{t}^{1-\alpha}}{\alpha^{\alpha}(1-\alpha)^{1-\alpha}}
\end{aligned}
$$

Marginal cost is identical across firms \qquad

$$
m c_{t}(i)=\frac{\partial t c_{t}(i)}{\partial y_{t}(i)}=\frac{1}{z_{t}} \frac{\left(r_{t}^{k}\right)^{\alpha} w_{t}^{1-\alpha}}{\alpha^{\alpha}(1-\alpha)^{1-\alpha}}=m c_{t}
$$

Flexible vs sticky prices ${ }^{1}$

- Central assumption of the (new) classical economics
- Prices (of goods and factor services) are fully flexible
- An increase in money supply increases prices 1:1 immediately
- Money is (super)neutral, monetary policy has no power
\rightarrow classical dichotomy
- In previous models we have abstracted from money and nominal variables
- (New) Keynesian economics
- Prices are sticky (inertial), do not adjust instantly
- Classical dichotomy no longer holds
\rightarrow nominal variables affect real
- Scope for monetary policy
- Additional propagation channels for other shocks

[^0]
Sticky prices: empirical evidence

- Price duration
- US: average time between price changes is 2-4 quarters Blinder et al. (1998), Bils and Klenow (2004), Klenow and Kryvstov (2008), Nakamura and Steinsson (2008)
- Euro area: average time between price changes is 4-5 quarters Dhyne et al. (2005), Altissimo et al. (2006)
- Poland: average time between price changes is 4 quarters Macias and Makarski (2013)
- The higher inflation, the more frequently price changes occur
- Cross-industry heterogeneity
- Prices of tradables less sticky than those of nontradables
- Retail prices usually more sticky than producer prices

Example retail prices behavior

Raw retail scanner data

http://jpkoning.blogspot.com/2015/10/are-prices-getting-less-sticky.html

Example retail prices behavior

After "controlling" for short-lived sales prices - reference prices

Theories on price stickiness

- Lucas (1972) - imperfect information
- When faced with a higher nominal demand for product a firm does not know whether real demand or price level went up
- If it's real demand firm should increase output
- If it's inflation firm should increase prices
- Low inflation environment - rational to leave prices unchanged
- Extensions: sticky information - Mankiw and Reis (2007); rational inattention - Sims (2003), Maćkowiak and Wiederholt (2009)
- Behavioral - psychological pricing, judging quality by price
- Costs of changing prices (explicit or implicit)
- Menu costs - Sheshinski and Weiss (1977), Akerlof and Yellen (1985), Mankiw (1985)
- Explicit contracts which are costly to renegotiate
- Long-term relationships with customers \rightarrow price changes less frequent in sectors with more monopoly power
- "Good" causes of price stickiness \rightarrow in a stable economic environment agents trust in price stability

Price stickiness depends on sector

Altissimo, Ehrmann and Smets (2006)
 Inflation persistence and price-setting behaviour in the euro area

Table 4.1 Frequency of consumer price changes by product type, in \%

Country	Unprocessed food	Processed food	$\begin{array}{r} \text { Energy } \\ \text { (oil } \\ \text { products) } \end{array}$	Non-energy industrial goods	Services	Total, country weights	Total, Euro area weights
Belgium	31.5	19.1	81.6	5.9	3.0	17.6	15.6
Germany	25.2	8.9	91.4	5.4	4.3	13.5	15.0
Spain	50.9	17.7	n.a.	6.1	4.6	13.3	11.5
France	24.7	20.3	76.9	18.0	7.4	20.9	20.4
Italy	19.3	9.4	61.6	5.8	4.6	10.0	12.0
Luxembourg	54.6	10.5	73.9	14.5	4.8	23.0	19.2
The Netherlands	30.8	17.3	72.6	14.2	7.9	16.2	19.0
Austria	37.5	15.5	72.3	8.4	7.1	15.4	17.1
Portugal	55.3	24.5	15.9	14.3	13.6	21.1	18.7
Finland	52.7	12.8	89.3	18.1	11.6	20.3	-
Euro Area	28.3	13.7	78.0	9.2	5.6	15.1	15.8

Source: Dhyne et al. (2005). Figures presented in this table are computed on the basis of the 50 product sample, with the only exception of Finland for which figures based on the entire CPI are presented. The total with country weights is calculated using country-specific weights for each item, the total with euro area weights using common euro area weights for each sub-index. No figures are provided for Finland because of a lack of comparability of the sample of products used in this country.

Survey assessment of price stickiness theories

Altissimo, Ehrmann and Smets (2006)
Inflation persistence and price-setting behaviour in the euro area

Table 4.6 Ranking of theories explaining price stickiness

	Belgium	Germany	Spain	France	Italy	Luxembourg	Nether- lands	Austria	Portugal	Euro Area
Implicit contracts	2.5		2.6	2.2		2.7	2.7	3.0	3.1	2.7
Explicit contracts	2.4	2.4	2.3	2.7	2.6	2.8	2.5	3.0	2.6	2.6
Cost-based pricing	2.4			2.5		2.7		2.6	2.7	2.6
Co-ordination failure	2.2	2.2	2.4	3.0	2.6	2.1	2.2	2.3	2.8	2.4
Judging quality by price	1.9		1.8			2.2	2.4	1.9	2.3	2.1
Temporary shocks	1.8	1.9	1.8	2.1	2.0	1.7	2.4	1.5	2.5	2.0
Change non-price factors	1.7		1.3			1.9	1.9	1.7		1.7
Menu costs	1.5	1.4	1.4	1.4	1.6	1.8	1.7	1.5	1.9	1.6
Costly information	1.6		1.3			1.8		1.6	1.7	1.6
Pricing thresholds	1.7		1.5	1.6	1.4	1.8	1.8	1.3	1.8	1.6

[^1]
Effects of price stickiness - influence of nominal variables

Results from a 4-variable 6-lag vector autoregression

New Keynesian model - introduction

- New Keynesian model is an RBC model with
- Monopolistic competition
- Sticky prices
- Monetary policy authority
- Model price stickiness via Calvo (1983) assumption
- A firm can change its price only if it receives a signal
- Firm does not receive the signal with probability θ
- Expected (average) price duration is $\frac{1}{1-\theta}$

Households - problem

For simplicity consider a model without physical capital

$$
\max E_{0}\left[\sum_{t=0}^{\infty} \beta^{t}\left(\frac{c_{t}^{1-\sigma}}{1-\sigma}-\phi \frac{h_{t}^{1+\eta}}{1+\eta}\right)\right]
$$

subject to $P_{t} c_{t}+B_{t}=W_{t} h_{t}+R_{t-1} B_{t-1}+P_{t} d i v_{t}$
where nominal bonds B yield the gross nominal interest rate R

Rewrite budget constraint in real terms

$$
\begin{aligned}
c_{t}+\frac{B_{t}}{P_{t}} & =\frac{W_{t}}{P_{t}} h_{t}+R_{t-1} \frac{P_{t-1}}{P_{t}} \frac{B_{t-1}}{P_{t-1}}+\operatorname{div}_{t} \\
c_{t}+b_{t} & =w_{t} h_{t}+\frac{R_{t-1}}{\Pi_{t}} b_{t-1}+\operatorname{div}_{t}
\end{aligned}
$$

where $\Pi_{t}=P_{t} / P_{t-1}$ is the gross inflation rate

Households - solution

Lagrangian

$$
\mathcal{L}=\sum_{t=0}^{\infty} \beta^{t} E_{0}\left[\begin{array}{c}
\frac{c_{t}^{1-\sigma}}{1-\sigma}-\phi \frac{h_{t}^{1+\eta}}{1+\eta} \\
+\lambda_{t}\left(w_{t} h_{t}+\frac{R_{t-1}}{\Pi_{t}} b_{t-1}+\operatorname{div}_{t}-c_{t}-b_{t}\right)
\end{array}\right]
$$

FOCs

$$
\begin{aligned}
c_{t} & : c_{t}^{-\sigma}-\lambda_{t}=0 \\
h_{t} & :-\phi h_{t}^{\eta}+\lambda_{t} w_{t}=0 \\
b_{t} & :-\lambda_{t}+\beta E_{t}\left[\lambda_{t+1}\left(R_{t} / \Pi_{t+1}\right)\right]=0
\end{aligned}
$$

Resulting
Intratemporal choice $(c+h): c_{t}^{-\sigma} w_{t}=\phi h_{t}^{\eta}$
Intertemporal choice $(c+b): \quad c_{t}^{-\sigma}=\beta E_{t}\left[c_{t+1}^{-\sigma}\left(R_{t} / \Pi_{t+1}\right)\right]$

Final goods producing firm I

Profit maximization problem

$$
\begin{aligned}
\max & P_{t} y_{t}-\int_{0}^{1} P_{t}(i) y_{t}(i) \mathrm{d} i \\
\text { subject to } & y_{t}=\left(\int_{0}^{1} y_{t}(i)^{\frac{1}{\mu}} \mathrm{~d} i\right)^{\mu}
\end{aligned}
$$

Lagrangian

$$
\mathcal{L}=P_{t} y_{t}-\int_{0}^{1} P_{t}(i) y_{t}(i) d i+\lambda_{t}\left[\left(\int_{0}^{1} y_{t}(i)^{\frac{1}{\mu}} \mathrm{~d} i\right)^{\mu}-y_{t}\right]
$$

FOCs

$$
\begin{aligned}
y_{t} & : \quad P_{t}-\lambda_{t}=0 \\
y_{t}(i) & : \quad-P_{t}(i)+\lambda_{t}\left[\mu\left(\int_{0}^{1} y_{t}(i)^{\frac{1}{\mu}} d i\right)^{\mu-1} \cdot \frac{1}{\mu} y_{t}(i)^{\frac{1}{\mu}-1}\right]=0
\end{aligned}
$$

Final goods producing firm II

Result

$$
\begin{aligned}
P_{t}(i) & \left.=P_{t}\left(\int_{0}^{1} y_{t}(i)^{\frac{1}{\mu}} d i\right)^{\mu-1} y_{t}(i)^{\frac{1-\mu}{\mu}} \quad \right\rvert\, \quad(\cdot)^{\frac{\mu}{\mu-1}} \\
P_{t}(i)^{\frac{\mu}{\mu-1}} & =P_{t}^{\frac{\mu}{\mu-1}}\left(\int_{0}^{1} y_{t}(i)^{\frac{1}{\mu}} \mathrm{~d} i\right)^{\mu} y_{t}(i)^{-1} \\
y_{t}(i) & =\left(\frac{P_{t}}{P_{t}(i)}\right)^{\frac{\mu}{\mu-1}} y_{t} \\
y_{t}(i) & =\left(\frac{P_{t}(i)}{P_{t}}\right)^{\frac{\mu}{1-\mu}} y_{t}
\end{aligned}
$$

Aggregate price index derivation

$$
P_{t}=\left(\int_{0}^{1} P_{t}(i)^{\frac{1}{1-\mu}} \mathrm{d} i\right)^{1-\mu}
$$

Intermediate goods producing firm I

Production function is linear in hours

$$
y_{t}(i)=z_{t} h_{t}(i)
$$

Cost minimization problem

$$
\begin{aligned}
\min & t c_{t}(i)=w_{t} h_{t}(i) \\
\text { subject to } & y_{t}(i)=z_{t} h_{t}(i)
\end{aligned}
$$

Lagrangian

$$
\mathcal{L}=-w_{t} h_{t}(i)+m c_{t}(i)\left(z_{t} h_{t}(i)-y_{t}(i)\right)
$$

FOC

$$
w_{t}=m c_{t}(i) z_{t}
$$

Marginal cost is identical across firms

$$
m c_{t}(i)=m c_{t}=\frac{w_{t}}{z_{t}}
$$

Intermediate goods producing firm II

Profit maximization problem (where $\Lambda_{0, t}=\lambda_{t} / \lambda_{0}$)

$$
\begin{aligned}
\max & E_{0}\left[\sum_{t=0}^{\infty}(\beta \theta)^{t} \Lambda_{0, t}\left(\frac{\tilde{P}_{0}(i)}{P_{t}} y_{t}(i)-m c_{t} y_{t}(i)\right)\right] \\
\text { subject to } & y_{t}(i)=\left(\frac{\tilde{P}_{0}(i)}{P_{t}}\right)^{\frac{\mu}{1-\mu}} y_{t}
\end{aligned}
$$

Define $\tilde{p}_{0}(i)=\tilde{P}_{0}(i) / P_{0}$ and $\Pi_{0, t}=P_{t} / P_{0}=\Pi_{1} \cdot \ldots \cdot \Pi_{t}$. Then

$$
\frac{\tilde{P}_{0}(i)}{P_{t}}=\frac{\tilde{P}_{0}(i)}{P_{0}} \frac{P_{0}}{P_{t}}=\tilde{p}_{0}(i) \frac{1}{\Pi_{0, t}}=\frac{\tilde{p}_{0}(i)}{\Pi_{0, t}}
$$

Rewrite
$\max \quad E_{0}\left[\sum_{t=0}^{\infty}(\beta \theta)^{t} \Lambda_{0, t}\left(\left(\frac{\tilde{p}_{0}(i)}{\Pi_{0, t}}\right)^{1+\frac{\mu}{1-\mu}} y_{t}-m c_{t}\left(\frac{\tilde{p}_{0}(i)}{\Pi_{0, t}}\right)^{\frac{\mu}{1-\mu}} y_{t}\right)\right]$

Intermediate goods producing firm III

$\max E_{0}\left[\sum_{t=0}^{\infty}(\beta \theta)^{t} \frac{\lambda_{t}}{\lambda_{0}}\left(\tilde{p}_{0}(i)^{1+\frac{\mu}{1-\mu}} \Pi_{0, t}^{\frac{\mu}{\omega^{-1}}-1} y_{t}-m c_{t} \tilde{p}_{0}(i)^{\frac{\mu}{1-\mu}} \Pi_{0, t}^{\frac{\mu}{\omega^{-1}}} y_{t}\right)\right]$
FOC

$$
\begin{aligned}
& E_{0}\left[\sum_{t=0}^{\infty}(\beta \theta)^{t} \frac{\lambda_{t}}{\lambda_{0}}\left(\frac{1}{1-\mu}\right) \tilde{p}_{0}(i)^{\frac{\mu}{1-\mu}} \Pi_{0, t}^{\frac{\mu}{0,-1}-1} y_{t}\right]= \\
&=E_{0}\left[\sum_{t=0}^{\infty}(\beta \theta)^{t} \frac{\lambda_{t}}{\lambda_{0}} m c_{t}\left(\frac{\mu}{1-\mu}\right) \tilde{p}_{0}(i)^{\frac{\mu}{1-\mu}-1} \Pi_{0, t}^{\frac{\mu}{\mu-1}-1} y_{t}\right]
\end{aligned}
$$

Optimal relative price

$$
\tilde{p}_{0}(i)=\mu \cdot \frac{E_{0}\left[\sum_{t=0}^{\infty}(\beta \theta)^{t} \lambda_{t} m c_{t} \Pi_{0, t}^{\frac{\mu}{\mu,-\tau}} y_{t}\right]}{E_{0}\left[\sum_{t=0}^{\infty}(\beta \theta)^{t} \lambda_{t} \Pi_{0, t}^{\frac{\mu}{\omega, t}-1} y_{t}\right]}
$$

Intermediate goods producing firm IV

Optimal relative price is the same across all firms resetting prices

$$
\tilde{p}_{t}=\mu \cdot \frac{E_{t}\left[\sum_{j=0}^{\infty}(\beta \theta)^{j} \lambda_{t+j} m c_{t+j} \Pi_{t, t+j}^{\frac{\mu}{\mu-1}} y_{t+j}\right]}{E_{t}\left[\sum_{j=0}^{\infty}(\beta \theta)^{j} \lambda_{t+j} \Pi_{t, t+j}^{\frac{1}{\mu-1}} y_{t+j}\right]}
$$

This expression has a convenient recursive representation

$$
\begin{aligned}
\tilde{p}_{t} & =\mu \frac{\text { Num }_{t}}{\text { Den }_{t}} \\
\operatorname{Num}_{t} & =\lambda_{t} m c_{t} y_{t}+\beta \theta E_{t}\left[\Pi_{t+1}^{\frac{\mu}{\mu-1}} \text { Num }_{t+1}\right] \\
\operatorname{Den}_{t} & =\lambda_{t} y_{t}+\beta \theta E_{t}\left[\Pi_{t+1}^{\frac{1}{\mu-1}} \operatorname{Den}_{t+1}\right]
\end{aligned}
$$

If prices are not sticky $(\theta=0)$ then

$$
\tilde{p}_{t}=\mu \cdot m c_{t}
$$

NK collapses to RBC with monopolistic competition

Inflation dynamics

Recall the formula for aggregate price index

$$
\begin{aligned}
P_{t} & =\left(\int_{0}^{1} P_{t}(i)^{\frac{1}{1-\mu}} \mathrm{d} i\right)^{1-\mu} \\
P_{t}^{\frac{1}{1-\mu}} & =\int_{0}^{\theta} P_{t-1}(i)^{\frac{1}{1-\mu}} \mathrm{d} i+\int_{\theta}^{1} \tilde{P}_{t}^{\frac{1}{1-\mu}} \mathrm{d} i \\
P_{t}^{\frac{1}{1-\mu}} & \left.=\theta P_{t-1}^{\frac{1}{1-\mu}}+(1-\theta) \tilde{P}_{t}^{\frac{1}{1-\mu}} \right\rvert\,: P_{t-1}^{\frac{1}{1-\mu}} \\
\left(\frac{P_{t}}{P_{t-1}}\right)^{\frac{1}{1-\mu}} & =\theta\left(\frac{P_{t-1}}{P_{t-1}}\right)^{\frac{1}{1-\mu}}+(1-\theta)\left(\frac{\tilde{P}_{t}}{P_{t}} \frac{P_{t}}{P_{t-1}}\right)^{\frac{1}{1-\mu}} \\
\Pi_{t}^{\frac{1}{1-\mu}} & =\theta+(1-\theta)\left(\tilde{p}_{t} \Pi_{t}\right)^{\frac{1}{1-\mu}} \\
\Pi_{t} & =\left[\theta /\left(1-(1-\theta) \tilde{p}_{t}^{\frac{1}{1-\mu}}\right)\right]^{1-\mu}
\end{aligned}
$$

Market clearing

Factor markets clear

$$
h_{t}=\int_{0}^{1} h_{t}(i) \mathrm{d} i
$$

Intermediate goods markets are in equilibrium

$$
\begin{aligned}
z_{t} h_{t}(i) & =\left(\frac{P_{t}(i)}{P_{t}}\right)^{\frac{\mu}{1-\mu}} y_{t} \\
\int_{0}^{1} z_{t} h_{t}(i) \mathrm{d} i & =\int_{0}^{1}\left(\frac{P_{t}(i)}{P_{t}}\right)^{\frac{\mu}{1-\mu}} y_{t} \mathrm{~d} i \\
z_{t} h_{t} & =y_{t} \int_{0}^{1}\left(\frac{P_{t}(i)}{P_{t}}\right)^{\frac{\mu}{1-\mu}} \mathrm{d} i \\
z_{t} h_{t} & =y_{t} \Delta_{t}
\end{aligned}
$$

where price dispersion Δ creates inefficiency

$$
y_{t}=\frac{z_{\mathrm{t}} h_{\mathrm{t}}}{\Delta_{t}}
$$

Output accounting

Dividends

$$
d i v_{t}=y_{t}-w_{t} h_{t}
$$

Budget constraint

$$
c_{t}+b_{t}=w_{t} h_{t}+\frac{R_{t-1}}{\Pi_{t}} b_{t-1}+\operatorname{div}_{t}
$$

In equilibrium representative agent holds 0 bonds $\left(b_{t}=b_{t-1}=0\right)$

$$
\begin{aligned}
& c_{t}=w_{t} h_{t}+y_{t}-w_{t} h_{t} \\
& c_{t}=y_{t}
\end{aligned}
$$

Price dispersion: source of inefficiency

Define

$$
\Delta_{t}=\int_{0}^{1}\left(\frac{P_{t}(i)}{P_{t}}\right)^{\frac{\mu}{1-\mu}} \mathrm{d} i
$$

Dynamics

$$
\begin{aligned}
& \Delta_{t}=\int_{0}^{\theta}\left(\frac{P_{t-1}(i)}{P_{t-1}} \frac{P_{t-1}}{P_{t}}\right)^{\frac{\mu}{1-\mu}} \mathrm{d} i+\int_{\theta}^{1}\left(\frac{\tilde{P}_{t}}{P_{t}}\right)^{\frac{\mu}{1-\mu}} \mathrm{d} i \\
& \Delta_{t}=\theta \Delta_{t-1} \Pi_{t}^{\frac{\mu}{\mu-1}}+(1-\theta) \tilde{p}_{t}^{\frac{\mu}{1-\mu}}
\end{aligned}
$$

One can show that $\Delta_{t} \geq 1$ and in consequence

$$
y_{t} \leq z_{t} h_{t}
$$

Costs of non-zero inflation

Price dispersion as a function of steady state gross annual inflation Parameters used: $\mu=1.33, \theta=0.75$

Costs of non-zero inflation

- Inflation is more harmful than deflation
- Costs of inflation are convex
- An annual inflation of 2% causes about 0.05% loss in GDP
- An annual inflation of 5% causes about 0.4% loss in GDP
- An annual inflation of 10% causes about 2% loss in GDP
- An annual inflation of 15% causes about 6% loss in GDP
- An annual inflation of 20% causes about 15% loss in GDP
- For high levels of inflation the model breaks down
\rightarrow not suitable for analysing hyperinflations
- Even before that firms would change prices more often
\rightarrow Calvo pricing is a modeling shortcut, not microfounded
- Despite efficiency losses from price dispersion, higher inflation target lowers probability of hitting ZLB
- Before the crisis the consensus for inflation target was 2%
- After the crisis: Blanchard, Ball and others propose 4%

Equilibrium conditions

$$
\text { Euler equation : } 1=\beta E_{t}\left(c_{t} / c_{t+1}\right)^{\sigma}\left(R_{t} / \Pi_{t+1}\right)
$$

Consumption-hours : $w_{t}=\phi h_{t}^{\eta} c_{t}^{\sigma}$
Real wages : $w_{t}=m c_{t} z_{t} h_{t}$
Production function : $y_{t}=z_{t} h_{t} / \Delta_{t}$
Price dispersion : $\Delta_{t}=\theta \Delta_{t-1} \Pi_{t}^{\frac{\mu}{\mu-1}}+(1-\theta) \tilde{p}_{t}^{\frac{\mu}{1-\mu}}$
Inflation dynamics : $\quad \Pi_{t}=\left[1 / \theta-(1 / \theta-1) \tilde{p}_{t}^{\frac{1}{1-\mu}}\right]^{\mu-1}$
Optimal reset price : $\tilde{p}_{t}=\mu \cdot\left(\right.$ Num $_{t} /$ Den $\left._{t}\right)$
Numerator : $\mathrm{Num}_{t}=c_{t}^{-\sigma} m c_{t} y_{t}+\beta \theta E_{t} \Pi_{t+1}^{\frac{\mu}{\mu-1}} N u m_{t+1}$
Denominator : $\operatorname{Den}_{t}=c_{t}^{-\sigma} y_{t}+\beta \theta E_{t} \Pi_{t+1}^{\frac{1}{\mu-1}}$ Den $_{t+1}$
Output accounting : $y_{t}=c_{t}$
TFP AR(1) process : $\ln z_{t}=\rho_{z} \ln z_{t-1}+\varepsilon_{z, t}$

Monetary policy

- There are 11 equations but 12 variables!
$\{y, c, h, w, z, m c, R, \Pi, \Delta, \tilde{p}, N u m$, Den $\}$
- Need another equation to close the model
- Model is closed by adding a monetary policy rule
- Often the Taylor rule is used

$$
\frac{R_{t}}{R}=\left(\frac{R_{t-1}}{R}\right)^{\gamma_{i}}\left(\left(\frac{\Pi_{t}}{\Pi}\right)^{\gamma_{\pi}}\left(\frac{y_{t}}{y}\right)^{\gamma_{x}}\right)^{1-\gamma_{i}} \varepsilon_{R, t}
$$

- Model stable only if Taylor principle fulfilled: ${ }^{2} \gamma_{\pi}>1$
- The model can then be reduced to just three equations: for output (gap), inflation and nominal interest rate (three-equation New Keynesian model)

[^2]
Three-equation New Keynesian model

- Full derivation here
- Denote output gap x_{t} as the log-difference between the actual output y_{t} and counterfactual output under flexible prices y_{t}^{f}
- New Keynesian IS curve (from Euler equation)

$$
x_{t}=E_{t} x_{t+1}-\frac{1}{\sigma}\left(i_{t}-E_{t} \pi_{t+1}\right)+\varepsilon_{t}^{l s}
$$

- New Keynesian Phillips curve (from inflation dynamics)

$$
\pi_{t}=\underbrace{\frac{(1-\beta \theta)(1-\theta)}{\theta}(\sigma+\eta)}_{\kappa} x_{t}+\beta E_{t} \pi_{t+1}+\varepsilon_{t}^{P C}
$$

- Taylor rule

$$
i_{t}=\gamma_{i} i_{t-1}+\left(1-\gamma_{i}\right)\left(\gamma_{\pi} \pi_{t}+\gamma_{x} x_{t}\right)+\varepsilon_{t}^{T R}
$$

- Shocks: demand $\varepsilon_{t}^{I S}$, cost-push $\varepsilon_{t}^{P C}$ (\neq TFP shock), monetary $\varepsilon_{t}^{T R}$ (unexpected deviation from monetary rule)

Positive demand shock

Positive cost-push shock

Negative monetary shock

Important properties ${ }^{3}$

- Short-run non-neutrality of monetary policy
- The (extended) NK model can generate impulse responses consistent with empirical studies
- In reaction to demand shocks output and inflation move in the same direction
- In reaction to supply shocks output and inflation move in opposite directions
${ }^{3}$ The following slides were adapted from Michał Brzoza-Brzezina's lecture

Role of expectations

$$
\pi_{t}=\kappa x_{t}+\beta E_{t} \pi_{t+1}+\varepsilon_{t}^{P C}
$$

- Current inflation is affected by inflation expectations
- Modern monetary policy: management of expectations
- Woodford (2005, p. 3):

For not only do expectations about policy matter, but, at least under current conditions, very little else matters

Rules (commitment) vs. discretion debate

- Old debate
- should monetary policy be bound by rules
or should it be free to do whatever it wants every period?
- Kydland and Prescott (1977) and Barro and Gordon (1983) show that central bank pursuing an overly ambitious
output goal will end up with inflation bias
- agents know that the central bank prefers
high output (positive gap) and adjust expectations
- as a result inflation is higher, but output gap is 0 !
- thus CB should credibly commit to keeping output at potential
- Today
- we do not think of central banks as trying to keep permanently positive output gaps
- but Clarida, Gali and Gertler (1999) show that even without such targets, commitment can be good

Optimal monetary policy I

- Price dispersion is lowest when all prices are equal
- This happens with zero inflation
- If sticky prices are the only distortion then optimal monetary policy in the short run is to stabilize inflation perfectly
- In the simple NK model stabilizing inflation at 0 also stabilizes (welfare-relevant) output gap (if $\varepsilon_{t}^{P C}=0$) \rightarrow Blanchard and Gali (2007): "divine coincidence"
- Attention: there may be other distortions, e.g. sticky wages
- Then optimal policy becomes more complicated (e.g. it may also have to stabilize wages)

Optimal monetary policy II

- Under richer models optimal policy has to solve trade-offs
- Rotemberg and Woodford (1998): when real imperfections are present, the second order approximation to social welfare is

$$
W_{0}=E_{0}\left[\sum_{t=0}^{\infty} \beta^{t}\left(\pi_{t}^{2}+\lambda x_{t}^{2}\right)\right]
$$

- Trade-off between between stabilizing inflation and output gap
- Consistent with behavior of central banks, who aim to stabilize both inflation and output gaps
- Question arises whether policy should be conducted discretionary or under commitment

Optimal policy under discretion

- Under optimal discretionary policy (ODP) the central bank is not able to influence expectations about future policy
- Optimizing boils down to solving static problems

$$
\begin{aligned}
\min & \frac{1}{2}\left(\pi_{t}^{2}+\lambda x_{t}^{2}\right) \\
\text { subject to } & \pi_{t}=\kappa x_{t}+\beta E_{t} \pi_{t+1}+\varepsilon_{t}^{P C}
\end{aligned}
$$

- Note that expectation terms are taken as given, since the CB is assumed not to influence them
- Solution: $\pi_{t}=-\frac{\lambda}{\kappa} x_{t}$
- This is called targeting rule (in contrast to instrument rules)
- After an inflationary shock the CB allows the output gap to become negative

Optimal policy under commitment I

- Under (credible) commitment the CB is able to influence expectations about future policy
- The problem is now dynamic

$$
\begin{aligned}
\min & \frac{1}{2} E_{0} \sum_{t=0}^{\infty} \beta^{t}\left(\pi_{t}^{2}+\lambda x_{t}^{2}\right) \\
\text { subject to } & \pi_{t}=\kappa x_{t}+\beta E_{t} \pi_{t+1}+\varepsilon_{t}^{P C}
\end{aligned}
$$

- Lagrangian

$$
\mathcal{L}=\sum_{t=0}^{\infty} \beta^{t} E_{0}\left[\frac{1}{2}\left(\pi_{t}^{2}+\lambda x_{t}^{2}\right)+\mu_{t}\left(\kappa x_{t}+\beta \pi_{t+1}+\varepsilon_{t}^{P C}-\pi_{t}\right)\right]
$$

- FOCs

$$
\begin{array}{llll}
x_{t+1}: & \beta^{t+1}\left[\lambda x_{t+1}+\mu_{t+1} \kappa\right]=0 & \rightarrow & \mu_{t}=-\frac{\lambda}{\kappa} x_{t} \\
\pi_{t+1} & : & \beta^{t+1}\left[\pi_{t+1}-\mu_{t+1}\right]+\beta^{t}\left[\mu_{t} \beta\right]=0 & \rightarrow \\
\pi_{t}=\mu_{t}-\mu_{t-1}
\end{array}
$$

Optimal policy under commitment II

- For $t=0$ we get $\left(\mu_{-1}=0\right)$

$$
\pi_{0}=\mu_{0}=-\frac{\lambda}{\kappa} x_{0}
$$

- Same as under discretion
- For $t \geq 1$

$$
\pi_{t}=\mu_{\mathrm{t}}-\mu_{\mathrm{t}-1}=-\frac{\lambda}{\kappa}\left(x_{t}-x_{t-1}\right)
$$

- Different than in period $t=0$
- Takes past developments into account
- Optimal commitment policy (OCP) means doing something today and promising to do something different from tomorrow on
- But tomorrow will be today tomorrow
\rightarrow time inconsistency

Optimal policy under commitment III

- OCP is time inconsistent - solutions?

1. Appoint very credible central bankers
2. Act in "timeless perspective": pretend that OCP has been applied long ago and use the formula for $t \geq 1$ from the beginning
-What is better: OCP or ODP?

- Neither invokes an inflation bias
- ODP generates a stabilization bias \rightarrow economy is more volatile
- The superiority of commitment calls for a credible, long-term arrangement for the central bank

Zero Lower Bound (liquidity trap)

Literally zero?

Key Negative Interest Rates

Zero Lower Bound (liquidity trap)

Nonbinding

Zero Lower Bound (liquidity trap)

Binding

Aggregate price index derivation

Perfect competition in the final goods sector implies

$$
\begin{aligned}
P_{t} y_{t} & =\int_{0}^{1} P_{t}(i) y_{t}(i) \mathrm{d} i \\
P_{t} y_{t} & =\int_{0}^{1} P_{t}(i)\left(\frac{P_{t}(i)}{P_{t}}\right)^{\frac{\mu}{1-\mu}} y_{t} \mathrm{~d} i \\
P_{t} y_{t} & =P_{t}^{-\frac{\mu}{1-\mu}} y_{t} \cdot \int_{0}^{1} P_{t}(i)^{1+\frac{\mu}{1-\mu}} \mathrm{d} i \\
P_{t}^{1+\frac{\mu}{1-\mu}} & =\int_{0}^{1} P_{t}(i)^{\frac{1}{1-\mu}} \mathrm{d} i \\
P_{t} & =\left(\int_{0}^{1} P_{t}(i)^{\frac{1}{1-\mu}} \mathrm{d} i\right)^{1-\mu}
\end{aligned}
$$

Optimal reset price - numerator

$\mathrm{Num}_{\mathrm{t}}=$

$$
\begin{aligned}
& =E_{t} \sum_{j=0}^{\infty}(\beta \theta)^{j} \lambda_{t+j} m c_{t+j} \Pi_{t, t+j}^{\frac{\mu}{\mu-1}} y_{t+j} \\
& =\lambda_{t} m c_{t} y_{t}+E_{t} \sum_{j=1}^{\infty}(\beta \theta)^{j} \lambda_{t+j} m c_{t+j} \Pi_{t, t+j}^{\frac{\mu}{\mu-1}} y_{t+j} \\
& =\lambda_{t} m c_{t} y_{t}+E_{t} \sum_{j=0}^{\infty}(\beta \theta)^{j} \lambda_{t+1+j} m c_{t+1+j} \Pi_{t, t+1+j}^{\frac{\mu}{\mu-1}} y_{t+1+j} \\
& =\lambda_{t} m c_{t} y_{t}+E_{t} \sum_{j=0}^{\infty}(\beta \theta)^{j} \lambda_{t+1+j} m c_{t+1+j}\left(\Pi_{t, t+1} \cdot \Pi_{t+1, t+1+j}\right)^{\frac{\mu}{\mu-1}} y_{t+1+j} \\
& =\lambda_{t} m c_{t} y_{t}+E_{t}\left[\Pi_{t, t+1}^{\frac{\mu}{\mu-1}} \cdot \sum_{j=0}^{\infty}(\beta \theta)^{j} \lambda_{t+1+j} m c_{t+1+j} \Pi_{t+1, t+1+j}^{\frac{\mu}{\mu-1}} y_{t+1+j}\right] \\
& =\lambda_{t} m c_{t} y_{t}+E_{t}\left[\Pi_{t, t+1}^{\frac{\mu}{\mu-1}} \cdot N u m_{t+1}\right]
\end{aligned}
$$

Optimal reset price - denominator

$$
\begin{aligned}
\operatorname{Den}_{t} & =E_{t} \sum_{j=0}^{\infty}(\beta \theta)^{j} \lambda_{t+j} \Pi_{t, t+j}^{\frac{1}{\mu-1}} y_{t+j} \\
& =\lambda_{t} y_{t}+E_{t} \sum_{j=1}^{\infty}(\beta \theta)^{j} \lambda_{t+j} \Pi_{t, t+j}^{\frac{1}{\mu-1}} y_{t+j} \\
& =\lambda_{t} y_{t}+E_{t} \sum_{j=0}^{\infty}(\beta \theta)^{j} \lambda_{t+1+j} \Pi_{t, t+1+j}^{\frac{1}{\mu-1}} y_{t+1+j} \\
& =\lambda_{t} y_{t}+E_{t} \sum_{j=0}^{\infty}(\beta \theta)^{j} \lambda_{t+1+j}\left(\Pi_{t, t+1} \cdot \Pi_{t+1, t+1+j}\right)^{\frac{1}{\mu-1}} y_{t+1+j} \\
& =\lambda_{t} y_{t}+E_{t}\left[\Pi_{t, t+1}^{\frac{1}{\mu-1}} \cdot \sum_{j=0}^{\infty}(\beta \theta)^{j} \lambda_{t+1+j} \Pi_{t+1, t+1+j}^{\frac{1}{\mu-1}} y_{t+1+j}\right] \\
& =\lambda_{t} y_{t}+E_{t}\left[\Pi_{t, t+1}^{\frac{1}{\mu-1}} \cdot \operatorname{Den}_{t+1}\right]
\end{aligned}
$$

[^0]: ${ }^{1}$ The following slides were adapted from Michał Brzoza-Brzezina's lectures

[^1]: Source: Fabiani et al. (2005). Euro area figures are unweighted averages of country scores.

[^2]: ${ }^{2}$ More precisely, $\kappa\left(\gamma_{\pi}-1\right)+(1-\beta) \gamma_{x}>0$

