

University of Warsaw Faculty of Economic Sciences

Models of unemployment

Advanced Macroeconomics IE: Lecture 17

Marcin Bielecki Spring 2019

University of Warsaw

		Std. Dev.		Corr. w. y		Autocorr.	
		Data	Model	Data	Model	Data	Model
Output	у	1.63	1.63	1.00	1.00	0.85	0.72
Consumption	С	0.87	0.63	0.77	0.94	0.83	0.79
Investment	i	4.51	5.07	0.76	0.99	0.87	0.71
Capital	k	0.59	0.45	0.40	0.09	0.95	0.96
Hours	h	1.91	0.71	0.88	0.98	0.91	0.71
Wage	W	0.97	0.95	0.11	0.99	0.68	0.75
TFP	Ζ	0.84	1.15	0.53	1.00	0.73	0.72
Productivity	<u>y</u> h	1.06	0.95	0.41	0.99	0.71	0.75

RBC model vs data comparison

- Model performance is quite good
 - it was a big surprise in the 1980s!
- There are some problems with it though
 - In the data, hours are slightly more volatile than output
 - In the model, hours are less than half as volatile as output
 - In the data, real wage can be either pro- or countercyclical
 - In the model, real wage is strongly procyclical
 - In the data TFP and productivity are mildly correlated with output
 - In the model both are 1:1 correlated with output
- Those results suggest that
 - Need some room for nominal variables
 - More shocks than just TFP are needed
 - We need to focus more on labor market
 - should improve behavior of hours and real wage

Most of the variation in hours worked is on the *extensive* margin (employment-unemployment) rather than on the *intensive* margin (hours worked by individual employees)

Most of the variation in hours worked is on the *extensive* margin (employment-unemployment) rather than on the *intensive* margin (hours worked by individual employees)

 $H_t = L_t h_t$

 $Var(\log H) = Var(\log L) + Var(\log h) + 2 \cdot Cov(\log L, \log h)$

Variance-covariance matrix of Hodrick-Prescott deviations

	Н	L	h
Total hours H	3.55		
Employment L		2.48	0.41
Hours per employee <i>h</i>		0.41	0.25

About 70% of variance of total hours worked is accounted for by variance of employment level and only 7% is accounted for by variance of hours worked by individual employees (the rest is accounted for by covariance)

Indivisible labor: setup

- "Realistic" hours worked variation results from a two-step process:
 - Decision between working and not working
 - Conditional on working, how much to work
- For simplicity we will focus on the first step only
- Hansen (1985, JME) and Rogerson (1988, JME) invented a clever technical solution
- In the RBC model households choose how much to work
- Here they will choose the probability p of working \overline{h} hours:
 - All workers are identical and can work for either 0 hours or a fixed number of hours \bar{h}
 - Each worker is a part of big family and consumes the same amount regardless of working or not
 - All workers will choose the same probability of working *p*

Consider first a single-period problem:

$$\max \quad U = \ln c + E \left[\phi \ln \left(1 - h \right) | p \right]$$

Expand the expected term:

$$E[\phi \ln(1-h)|p] = p\phi \ln(1-\bar{h}) + (1-p)\phi \log(1-0) = p\phi \ln(1-\bar{h})$$

Since all workers choose the same p, the average number of hours per worker household h is equal to probability p times working hours per employed \bar{h} :

$$h = p\bar{h} \rightarrow p = h/\bar{h}$$

Going back to the expected term:

$$E\left[\phi\ln\left(1-h\right)|p\right] = p\phi\ln(1-\bar{h}) = h\frac{\phi\ln(1-\bar{h})}{\bar{h}} \equiv -Bh$$

where $B = -\phi \ln(1 - \bar{h})/\bar{h} > 0$. Utility becomes linear in h!

Households' solution I

Households solve the expected utility maximization problem:

$$\max \quad U_t = E_t \left[\sum_{i=0}^{\infty} \beta^i \left(\ln c_{t+i} - Bh_{t+i} \right) \right]$$

subject to $a_{t+1} + c_t = (1 + r_t) a_t + w_t h_t + d_t$

Lagrangian:

$$\mathcal{L} = \sum_{i=0}^{\infty} \beta^{i} E_{t} \left[\begin{array}{c} \ln c_{t+i} - Bh_{t+i} \\ +\lambda_{t+i} \left[(1+r_{t+i}) a_{t+i} + w_{t+i} h_{t+i} + d_{t} - a_{t+1+i} - c_{t+i} \right] \right]$$

First order conditions:

$$\begin{aligned} c_t &: \quad \frac{1}{c_t} - \lambda_t = 0 & \to & \lambda_t = \frac{1}{c_t} \\ h_t &: \quad -B + \lambda_t w_t = 0 & \to & \lambda_t = \frac{B}{w_t} \\ a_{t+1} &: \quad -\lambda_t + \beta E_t \left[\lambda_{t+1} \left(1 + r_{t+1} \right) \right] = 0 & \to & \lambda_t = \beta E_t \left[\lambda_{t+1} \left(1 + r_{t+1} \right) \right] \end{aligned}$$

First order conditions:

$$c_t : \lambda_t = \frac{1}{c_t}$$

$$h_t : \lambda_t = \frac{B}{w_t}$$

$$a_{t+1} : \lambda_t = \beta E_t [\lambda_{t+1} (1 + r_{t+1})]$$

Resulting in:

System of 8 equations and 8 unknowns: $\{c, h, y, r, w, k, i, z\}$

 $\begin{array}{rcl} \mbox{Euler equation} & : & 1/c_t = \beta E_t \left[(1/c_{t+1}) \left(1 + r_{t+1} \right) \right] \\ \mbox{Consumption-hours choice} & : & c_t = Bw_t \\ \mbox{Production function} & : & y_t = z_t k_t^{\alpha} h_t^{1-\alpha} \\ \mbox{Real interest rate} & : & r_t = \alpha z_t k_t^{\alpha-1} h_t^{1-\alpha} - \delta \\ \mbox{Real hourly wage} & : & w_t = (1 - \alpha) y_t / h_t \\ \mbox{Investment} & : & i_t = k_{t+1} - (1 - \delta) k_t \\ \mbox{Output accounting} & : & y_t = c_t + i_t \\ \mbox{TFP AR(1) process} & : & z_t = (1 - \rho_z) + \rho_z z_{t-1} + \varepsilon_t \end{array}$

Steady state - closed form solution

Start with the Euler equation:

$$\frac{1}{c_t} = \beta E_t \left[\frac{1}{c_{t+1}} \left(1 + r_{t+1} \right) \right] \quad \rightarrow \quad 1 = \beta \left(1 + r \right) \quad \rightarrow \quad r = \frac{1}{\beta} - 1$$

From the interest rate equation obtain the k/h ratio:

$$r = \alpha k^{\alpha - 1} h^{1 - \alpha} - \delta \quad \rightarrow \quad \left(\frac{k}{h}\right)^{\alpha - 1} = \frac{r + \delta}{\alpha} \quad \rightarrow \quad \frac{k}{h} = \left(\frac{\alpha}{r + \delta}\right)^{\frac{1}{1 - \alpha}}$$

From the production function obtain the y/h ratio and then wage:

$$y = k^{\alpha} h^{1-\alpha} \quad \rightarrow \quad \frac{y}{h} = \left(\frac{k}{h}\right)^{\alpha} \quad \text{and} \quad w = (1-\alpha) \frac{y}{h}$$

From investment and output accounting eqns. obtain the c/h ratio:

$$i = \delta k \quad \rightarrow \quad y = c + \delta k \quad \rightarrow \quad \frac{c}{h} = \frac{y}{h} - \delta \frac{k}{h}$$

Get *c* from the consumption-hours choice. Then obtain *h*:

$$c = Bw \rightarrow h = \frac{c}{c/h}$$

- To best compare our two models, we need them to generate identical steady states
- We replace parameter ϕ with parameter B
- We choose the value for *B* so that it matches h = 1/3
- For this model B = 2.63

Model comparison: impulse response functions

RBC model IRF: black solid lines

Indivisible labor IRF: red dashed lines

Percentage deviations from steady state (percentage points for r)

	Std. Dev.			Corr. w. y			Autocorr.		
	Data	RBC	Ind	Data	RBC	Ind	Data	RBC	Ind
y	1.63	1.63	1.63	1.00	1.00	1.00	0.85	0.72	0.72
С	0.87	0.63	0.57	0.77	0.94	0.92	0.83	0.79	0.80
i	4.51	5.07	5.28	0.76	0.99	0.99	0.87	0.71	0.71
k	0.59	0.45	0.46	0.40	0.09	0.08	0.95	0.96	0.96
h	1.91	0.71	1.13	0.88	0.98	0.98	0.91	0.71	0.71
W	0.97	0.95	0.57	0.11	0.99	0.92	0.68	0.75	0.80
Ζ	0.84	1.15	0.88	0.53	1.00	1.00	0.73	0.72	0.72
y h	1.06	0.95	0.57	0.41	0.99	0.92	0.71	0.75	0.80

Model comparison: model-generated hours worked

- Model enhances hours volatility (but it's still too low)
- Improves correlation of wages and productivity with output
- Slightly decreases empirical match in other dimensions
- Technical advantage: requires smaller TFP shocks
- Philosophical advantage: more "realistic" labor market

- Labor markets are in a state of constant flux
- At the same time there are job-seeking workers and worker-seeking firms
- Labor markets are decentralized and active search is needed
- Search friction leads to unemployment even in the steady state
- Peter Diamond, Dale Mortensen and Christopher Pissarides were awarded the Nobel Prize in 2010 for developing this model

Labor market status and flows: EU 2018Q4

Labor market status change probabilities: EU 2018Q4

Source: Eurostat

Unemployment and vacancy rates: USA 1948-2019

Labor market fluctuations: USA 1950-2019

Matching function

- Firms create open job positions (openings, vacancies)
- Workers search for jobs
- Both jobs and workers are heterogeneous
 → not every possible match is attractive
- Matching function captures this feature
- New matches *M* are a function of the pool of unemployed *U* and pool of vacancies *V*:

$$M_t = M(V_t, U_t) = \chi V_t^{\eta} U_t^{1-\eta}$$

where $\chi > 0$ and $\eta \in (0, 1)$

Job finding and job filling probabilities

• Unemployed workers are interested in job finding probability *p*:

$$p_t = \frac{M_t}{U_t} = \chi \left(\frac{V_t}{U_t}\right)^{\eta} = \chi \theta_t^{\eta} = q_t \theta_t$$

where $\theta = V/U$ is called labor market tightness

• Firms with vacancies care about job filling probability q:

$$q_t = \frac{M_t}{V_t} = \chi \left(\frac{V_t}{U_t}\right)^{\eta - 1} = \chi \theta_t^{\eta - 1} = \frac{p_t}{\theta_t}$$

- Dual externality from congestion:
 - High number of unemployed decreases p and increases q
 - High number of vacancies increases p and decreases q

Employment dynamics

• Ignoring labor market inactivity, employment rate *n* and unemployment rate *u* sum to unity:

$$n_t + u_t = 1 \quad \rightarrow \quad n_t = 1 - u_t$$

- · Existing matches are destroyed with exogenous probability s
- · New matches increase next period employment:

$$n_t = n_{t-1} - sn_{t-1} + m_{t-1}$$

$$u_t = u_{t-1} + sn_{t-1} - m_{t-1}$$

 We can find the steady state unemployment rate as a function of separation and job finding probabilities:

$$u = u + s (1 - u) - p (\theta) u$$
$$u = \frac{s}{s + p (\theta)}$$

• This generates a Beveridge curve: a negative relationship between the unemployment and vacancy rates

Beveridge curve: theory

Graph by Leszek Wincenciak

Beveridge curve: data

Beveridge curve: data

Detrending with Hodrick-Prescott filter takes out structural shifts

Beveridge curve: "estimation"

Firm side

- Assume firms and workers discount future with β
- Period net gain from a filled job equals marginal product of employee mpn less wage w
- Existing matches are destroyed with probability s:

 $\mathcal{J}_{t} = (mpn_{t} - w_{t}) + \beta E_{t} \left[(1 - s) \mathcal{J}_{t+1} + s \mathcal{V}_{t+1} \right]$

- Period net loss from open vacancy is its cost κ
- With probability q the vacancy will be filled:

$$\mathcal{V}_{t} = -\kappa + \beta E_{t} \left[q_{t} \mathcal{J}_{t+1} + (1 - q_{t}) \mathcal{V}_{t+1} \right]$$

- Free entry in vacancies ensures that always $\mathcal{V}=\mathbf{0}$
- In the steady state ($r = 1/\beta 1$):

$$mpn - w = (r + s) \kappa / q(\theta)$$

- Period net gain from employment equals wage w
- Existing matches are destroyed with probability s:

$$\mathcal{E}_{t} = w_{t} + \beta E_{t} \left[(1 - s) \mathcal{E}_{t+1} + s \mathcal{U}_{t+1} \right]$$

- Period net gain from unemployment equals benefits (and possibly utility from leisure) *b*
- With probability p an unemployed person finds a job:

$$\mathcal{U}_{t} = b + \beta E_{t} \left[p_{t} \mathcal{E}_{t+1} + (1 - p_{t}) \mathcal{U}_{t+1} \right]$$

Wage setting

- The negotiated wage can be anywhere between the gain from unemployment b and the marginal product of employee mpn plus match gain $\kappa\theta$
- Nash bargaining allows to model the outcome of negotiations
- Let $\gamma \in [0, 1]$ denote the relative bargaining power of firms
- The negotiated wage is the solution of the problem:

$$\max_{w_{t}} \quad \left[\mathcal{J}_{t}\left(w_{t}\right)\right]^{\gamma} \left[\mathcal{E}_{t}\left(w_{t}\right) - \mathcal{U}_{t}\right]^{1-\gamma}$$

$$w_{t} = \gamma b + (1 - \gamma) \left(m p n_{t} + \kappa \theta_{t} \right)$$

• Intuitively: $w \to b$ if $\gamma \to 1$ and $w \to mpn + \kappa \theta$ if $\gamma \to 0$

System of 9 equations and 9 unknowns: $\{w, mpn, \theta, \mathcal{J}, q, u, n, m, v\}$

$$\begin{split} w_t &= \gamma b + (1 - \gamma) \left(mpn_t + \kappa \theta_t \right) \\ \mathcal{J}_t &= \left(mpn_t - w_t \right) + (1 - s) \cdot \beta E_t \left[\mathcal{J}_{t+1} \right] \\ \kappa &= q_t \cdot \beta E_t \left[\mathcal{J}_{t+1} \right] \\ u_t &= 1 - n_t \\ n_t &= (1 - s) n_{t-1} + m_{t-1} \\ q_t &= \chi \theta_t^{\eta - 1} \\ \theta_t &= v_t / u_t \\ m_t &= \chi v_t^{\eta} u_t^{1 - \eta} \\ mpn_t &= (1 - \rho) + \rho \cdot mpn_{t-1} + \varepsilon_t \end{split}$$

In the steady state the model is fully summarized by the following three key equations:

Beveridge curve (BC) :
$$u = \frac{s}{s + p(\theta)}$$

Job (vacancy) creation (JC) : $w = mpn - (r + s) \frac{\kappa}{q(\theta)}$
Wage setting (W) : $w = \gamma b + (1 - \gamma) (mpn + \kappa \theta)$

Steady state: graphical solution

Graph by Leszek Wincenciak

Comparative statics I

Effects of an increase in unemployment benefits ($b \uparrow$) or in workers' bargaining power ($\gamma \downarrow$):

- Increase in real wage w
- Decrease in labor market tightness θ
- Decrease in vacancy rate v
- Increase in unemployment rate u

Graph by Leszek Wincenciak

Comparative statics II

Effects of an increase in separation rate (s \uparrow) or a decrease in matching efficiency ($\chi \downarrow$):

- Decrease in real wage w
- Decrease in labor market tightness θ
- Ambiguous effect on vacancy rate v
- Increase in unemployment rate *u*

Graph by Leszek Wincenciak

Comparative statics III

Effects of an increase in interest rate ($r \uparrow$) or an increase in impatience ($\rho \uparrow \rightarrow \beta \downarrow$):

- Decrease in real wage w
- Decrease in labor market tightness θ
- Decrease in vacancy rate v
- Increase in unemployment rate u

Graph by Matthias Hertweck

Comparative statics IV

Effects of an increase in labor productivity ($mpn \uparrow$):

- Increase in real wage w
- Increase in labor market tightness θ
- Increase in vacancy rate v
- Decrease in unemployment rate u

Graph by Matthias Hertweck

Reduced form of the model (with mpn treated as exogenous):

$$\dot{u} = \mathsf{s}\left(\mathsf{1} - u\right) - \chi\theta^{\eta} \cdot u$$

$$\dot{\theta} = \frac{\theta}{1-\eta} \left[(\mathbf{r} + \mathbf{s}) - \gamma \left(\mathbf{mpn} - \mathbf{b} \right) \frac{\chi \theta^{\eta-1}}{\kappa} + (1-\gamma) \chi \theta^{\eta} \right]$$

The dynamic equation for θ is independent of u: $\dot{\theta} = 0$ is a flat line in the (u, θ) space

Transitional dynamics: phase diagram

Graph by Matthias Hertweck

Transitional dynamics: positive productivity shock

Graph by Matthias Hertweck

Values come from Shimer (2005, AER)

	Description	Value
χ	matching efficiency	0.45
η	matching elasticity of v	0.28
S	separation probability	0.033
β	discount factor	0.99
mpn	steady state marginal product	1
κ	vacancy cost	0.21
b	unemployment benefit	0.4
γ	firm bargaining power	0.28

	Description	Value
и	unemployment rate	0.0687
v	vacancy rate	0.0674
т	new matches	0.031
θ	tightness	0.98
р	job finding probability	0.448
q	job filling probability	0.456
W	wage	0.98

Impulse response functions I

Impulse response functions II

Model generated Beveridge curve

- We have a "realistic" model of the labor market
- Able to match both steady state (average) and some cyclical properties of the labor market
- Replicates the negative slope of the Beveridge curve
- Not enough variation in employment
- Beveridge curve too steep
- Too much variation in wages

Values come from Hagedorn & Manovskii (2008, AER)

	Description	Value
η	matching elasticity of v	0.45
b	unemployment benefit	0.965
γ	firm bargaining power	0.928

- Firms have very strong bargaining position
- But unemployment gain includes leisure utility
- Steady state unchanged

Hagedorn & Manovskii: Impulse response functions

Hagedorn & Manovskii: Beveridge curve

Mortensen & Nagypal: Beveridge curve

Mortensen & Nagypal (2007) set $\eta = 0.54$

Model BC replicates slope of the data BC:

- Alternative parametrizations yield better results
- Both unemployment and employment become more volatile
- Volatility of wages is diminished
- Key problem for the search and matching model identified: period-by-period Nash bargaining
- Further extensions make alternative assumptions about the wage setting process

- Very easy
- Get mpn from the usual firm problem
- Adjust β for $\beta \frac{\lambda_{t+1}}{\lambda_t}$ in the firm's valuation since the latter is the correct stochastic discounting factor
- Solve for labor market variables
- Get back to the RBC part
- Include vacancy costs in the national accounting equation:

$$\mathbf{y}_t = \mathbf{c}_t + \mathbf{i}_t + \kappa \mathbf{v}_t$$

Observation of Fujita

Fujita (2004): model IRF for vacancies is counterfactual

• We have assumed linear vacancy costs:

$$w_{t} = \gamma b + (1 - \gamma) (mpn_{t} + \kappa \theta_{t})$$
$$\frac{\kappa}{q_{t}} = \beta E_{t} \left[mpn_{t+1} - w_{t+1} + (1 - s) \frac{\kappa}{q_{t+1}} \right]$$

• Gertler & Trigari (2009, JPE) assume convex costs:

$$\begin{aligned} x_t &\equiv \frac{m_t}{n_t} \\ w_t &= \gamma b + (1 - \gamma) \left(m p n_t + \frac{\kappa}{2} x_t^2 + p_t \kappa x_t \right) \\ \kappa x_t &= \beta E_t \left[m p n_{t+1} - w_{t+1} + (1 - s) \kappa x_{t+1} + \frac{\kappa}{2} x_t^2 \right] \end{aligned}$$

• They also consider multi-period wage contracts: within each period only a fraction of wage contracts are renegotiated

Gertler & Trigari: Impulse response functions

Monthly period frequency

Gertler & Trigari: Beveridge curve (flexible wages)

Gertler & Trigari: Beveridge curve (staggered wages)

Beveridge curve: data

Gertler & Trigari: business cycle statistics

	у	w	ls	n	u	υ	θ	a	i	с
	A. U.S. Economy, 1964:1–2005:1									
Relative standard deviation Autocorrelation Correlation with <i>y</i>	$1.00 \\ .87 \\ 1.00$.52 .91 .56	.51 .73 20	.60 .94 .78	5.15 .91 86	6.30 .91 .91	11.28 .91 .90	.61 .79 .71	2.71 .85 .94	.41 .87 .81
	B. Model Economy, $\lambda = 0$ (Flexible Wages)									
Relative standard deviation Autocorrelation Correlation with <i>y</i>	1.00 .81 1.00	.87 .81 1.00	.09 .58 54	.10 .92 .59	$1.24 \\ .92 \\59$	1.58 .86 .98	2.72 .90 .92	.93 .78 1.00	3.11 .80 .99	.37 .85 .93
		C.	Model	Ecor	nomy, λ	x = 8/	⁄9 (3 Q	uarter	s)	
Relative standard deviation Autocorrelation Correlation with <i>y</i>	$1.00 \\ .84 \\ 1.00$.56 .95 .66	.57 .65 –.56	.35 .90 .77	4.44 .90 77	5.81 .82 .91	9.84 .88 .94	.71 .76 .97	3.18 .86 .99	.35 .86 .90
		D. 1	Model	Econo	omy, λ	= 11,	/12 (4	Quarte	ers)	
Relative standard deviation Autocorrelation Correlation with <i>y</i>	$1.00 \\ .85 \\ 1.00$.48 .96 .55	.58 .68 59	.44 .91 .78	5.68 .91 78	7.28 .86 .93	12.52 .90 .95	.64 .74 .95	3.18 .88 .99	.34 .86 .90

- After adding multi-period contracts, Gertler & Trigari obtain a very good empirical match of the RBC model with search & matching features
- This is one of the best matches for single-shock models
- Key to the success was:
 - Convex vacancy posting
 - Staggered (multi-period) wage contracts

- Endogenous (non-constant) separation rate
- On-the-job search
- Hours per worker adjustments

Derivation of the wage setting equation I

The negotiated wage is the solution of the problem:

$$\max_{w_{t}} \quad \left[\mathcal{J}_{t}\left(w_{t}\right)\right]^{\gamma} \left[\mathcal{E}_{t}\left(w_{t}\right) - \mathcal{U}_{t}\right]^{1-\gamma}$$

Derivatives of \mathcal{J}_t and \mathcal{E}_t with respect to wage w_t :

$$\begin{aligned} \mathcal{J}_t &= mpn_t - w_t + (1 - s) \cdot \beta E_t \left[\mathcal{J}_{t+1} \right] & \to \quad \frac{\partial \mathcal{J}_t}{\partial w_t} = -1 \\ \mathcal{E}_t &= w_t + \beta E_t \left[(1 - s) \, \mathcal{E}_{t+1} + s \mathcal{U}_{t+1} \right] & \to \quad \frac{\partial \mathcal{E}_t}{\partial w_t} = 1 \end{aligned}$$

0 0

First order condition:

$$\begin{split} \gamma \mathcal{J}_{t}^{\gamma-1} \cdot \frac{\partial \mathcal{J}_{t}}{\partial \mathsf{w}_{t}} \cdot \left(\mathcal{E}_{t} - \mathcal{U}_{t}\right)^{1-\gamma} + \mathcal{J}_{t}^{\gamma} \cdot (1-\gamma) \left(\mathcal{E}_{t} - \mathcal{U}_{t}\right)^{-\gamma} \cdot \frac{\partial \mathcal{E}_{t}}{\partial \mathsf{w}_{t}} = \mathbf{0} \\ \gamma \left(\mathcal{E}_{t} - \mathcal{U}_{t}\right) = (1-\gamma) \mathcal{J}_{t} \end{split}$$

Plug in expressions for \mathcal{E}_t , \mathcal{U}_t and \mathcal{J}_t :

$$\gamma \{ (\mathbf{w}_t - \mathbf{b}) + \beta (\mathbf{1} - \mathbf{s} - \mathbf{p}_t) E_t [\mathcal{E}_{t+1} - \mathcal{U}_{t+1}] \}$$

= $(\mathbf{1} - \gamma) \{ (mpn_t - \mathbf{w}_t) + \beta E_t [(\mathbf{1} - \mathbf{s}) \mathcal{J}_{t+1}] \}$

$$w_{t} - \gamma b + (1 - s - p_{t}) \beta E_{t} \left[\gamma \left(\mathcal{E}_{t+1} - \mathcal{U}_{t+1} \right) \right]$$
$$= (1 - \gamma) mpn_{t} + (1 - s) \beta E_{t} \left[(1 - \gamma) \mathcal{J}_{t+1} \right]$$

$$w_{t} - \gamma b + (1 - s - p_{t}) \beta E_{t} [(1 - \gamma) \mathcal{J}_{t+1}]$$

= $(1 - \gamma) mpn_{t} + (1 - s) \beta E_{t} [(1 - \gamma) \mathcal{J}_{t+1}]$

Derivation of the wage setting equation III

$$w_{t} = \gamma b + (1 - \gamma) \{mpn_{t} + p_{t}\beta E_{t} [\mathcal{J}_{t+1}]\}$$

$$\kappa/q_{t} = \beta E_{t} [\mathcal{J}_{t+1}]$$

$$w_{t} = \gamma b + (1 - \gamma) (mpn_{t} + p_{t}\kappa/q_{t})$$

$$w_{t} = \gamma b + (1 - \gamma) (mpn_{t} + \kappa\theta_{t})$$

◀ back