Models of unemployment

Advanced Macroeconomics IE: Lecture 17

Marcin Bielecki
Spring 2019
University of Warsaw

RBC model vs data comparison

		Std. Dev.		Corr. w. y		Autocorr.	
	Data	Model	Data	Model	Data	Model	
Output	y	1.63	1.63	1.00	1.00	0.85	0.72
Consumption	c	0.87	0.63	0.77	0.94	0.83	0.79
Investment	i	4.51	5.07	0.76	0.99	0.87	0.71
Capital	k	0.59	0.45	0.40	0.09	0.95	0.96
Hours	h	$\mathbf{1 . 9 1}$	$\mathbf{0 . 7 1}$	0.88	0.98	0.91	0.71
Wage	w	0.97	0.95	$\mathbf{0 . 1 1}$	$\mathbf{0 . 9 9}$	0.68	0.75
TFP	z	0.84	1.15	$\mathbf{0 . 5 3}$	$\mathbf{1 . 0 0}$	0.73	0.72
Productivity	$\frac{y}{h}$	1.06	0.95	$\mathbf{0 . 4 1}$	$\mathbf{0 . 9 9}$	0.71	0.75

RBC model vs data comparison

- Model performance is quite good
- it was a big surprise in the 1980s!
- There are some problems with it though
- In the data, hours are slightly more volatile than output
- In the model, hours are less than half as volatile as output
- In the data, real wage can be either pro- or countercyclical
- In the model, real wage is strongly procyclical
- In the data TFP and productivity are mildly correlated with output
- In the model both are 1:1 correlated with output
- Those results suggest that
- Need some room for nominal variables
- More shocks than just TFP are needed
- We need to focus more on labor market
- should improve behavior of hours and real wage

Indivisible labor: introduction

Most of the variation in hours worked is on the extensive margin (employment-unemployment) rather than on the intensive margin (hours worked by individual employees)

Indivisible labor: introduction

Most of the variation in hours worked is on the extensive margin (employment-unemployment) rather than on the intensive margin (hours worked by individual employees)

$$
\begin{aligned}
H_{t} & =L_{t} h_{t} \\
\operatorname{Var}(\log H) & =\operatorname{Var}(\log L)+\operatorname{Var}(\log h)+2 \cdot \operatorname{Cov}(\log L, \log h)
\end{aligned}
$$

Variance-covariance matrix of Hodrick-Prescott deviations

	H	L	h
Total hours H	3.55		
Employment L		2.48	0.41
Hours per employee h		0.41	0.25

About 70\% of variance of total hours worked is accounted for by variance of employment level and only 7% is accounted for by variance of hours worked by individual employees (the rest is accounted for by covariance)

Indivisible labor: setup

- "Realistic" hours worked variation results from a two-step process:
- Decision between working and not working
- Conditional on working, how much to work
- For simplicity we will focus on the first step only
- Hansen (1985, JME) and Rogerson (1988, JME) invented a clever technical solution
- In the RBC model households choose how much to work
- Here they will choose the probability p of working \bar{h} hours:
- All workers are identical and can work for either 0 hours or a fixed number of hours \bar{h}
- Each worker is a part of big family and consumes the same amount regardless of working or not
- All workers will choose the same probability of working p

Households' problem

Consider first a single-period problem:

$$
\max \quad U=\ln c+E[\phi \ln (1-h) \mid p]
$$

Expand the expected term:

$$
E[\phi \ln (1-h) \mid p]=p \phi \ln (1-\bar{h})+(1-p) \phi \log (1-0)=p \phi \ln (1-\bar{h})
$$

Since all workers choose the same p, the average number of hours per worker household h is equal to probability p times working hours per employed \bar{h} :

$$
h=p \bar{h} \quad \rightarrow \quad p=h / \bar{h}
$$

Going back to the expected term:

$$
E[\phi \ln (1-h) \mid p]=p \phi \ln (1-\bar{h})=h \frac{\phi \ln (1-\bar{h})}{\bar{h}} \equiv-B h
$$

where $B=-\phi \ln (1-\bar{h}) / \bar{h}>0$. Utility becomes linear in h !

Households' solution I

Households solve the expected utility maximization problem:

$$
\max U_{t}=E_{t}\left[\sum_{i=0}^{\infty} \beta^{i}\left(\ln c_{t+i}-B h_{t+i}\right)\right]
$$

subject to $a_{t+1}+c_{t}=\left(1+r_{t}\right) a_{t}+w_{t} h_{t}+d_{t}$
Lagrangian:

$$
\mathcal{L}=\sum_{i=0}^{\infty} \beta^{i} E_{t}\left[\begin{array}{c}
\ln c_{t+i}-B h_{t+i} \\
+\lambda_{t+i}\left[\left(1+r_{t+i}\right) a_{t+i}+w_{t+i} h_{t+i}+d_{t}-a_{t+1+i}-c_{t+i}\right]
\end{array}\right]
$$

First order conditions:

$$
\begin{array}{rlrl}
c_{t} & : \frac{1}{c_{t}}-\lambda_{t}=0 & & \rightarrow \\
\lambda_{t}=\frac{1}{c_{t}} \\
h_{t} & : \quad-B+\lambda_{t} w_{t}=0 & & \rightarrow \quad \lambda_{t}=\frac{B}{w_{t}} \\
a_{t+1} & : \quad-\lambda_{t}+\beta E_{t}\left[\lambda_{t+1}\left(1+r_{t+1}\right)\right]=0 & & \rightarrow
\end{array} \lambda_{t}=\beta E_{t}\left[\lambda_{t+1}\left(1+r_{t+1}\right)\right]
$$

Households' solution II

First order conditions:

$$
\begin{array}{rll}
c_{t} & : & \lambda_{t}=\frac{1}{c_{t}} \\
h_{t} & : & \lambda_{t}=\frac{B}{w_{t}} \\
a_{t+1} & : & \lambda_{t}=\beta E_{t}\left[\lambda_{t+1}\left(1+r_{t+1}\right)\right]
\end{array}
$$

Resulting in:
Intertemporal condition $(c+a): \frac{1}{c_{t}}=\beta E_{t}\left[\frac{1}{c_{t+1}}\left(1+r_{t+1}\right)\right]$
Intratemporal condition $(c+h): \quad c_{t}=B w_{t}$

Full set of equilibrium conditions

System of 8 equations and 8 unknowns: $\{c, h, y, r, w, k, i, z\}$

$$
\text { Euler equation }: 1 / c_{t}=\beta E_{t}\left[\left(1 / c_{t+1}\right)\left(1+r_{t+1}\right)\right]
$$

Consumption-hours choice : $c_{t}=B w_{t}$
Production function : $y_{t}=z_{t} k_{t}^{\alpha} h_{t}^{1-\alpha}$
Real interest rate : $r_{t}=\alpha z_{t} k_{t}^{\alpha-1} h_{t}^{1-\alpha}-\delta$
Real hourly wage : $w_{t}=(1-\alpha) y_{t} / h_{t}$
Investment : $i_{t}=k_{t+1}-(1-\delta) k_{t}$
Output accounting : $y_{t}=c_{t}+i_{t}$
$\operatorname{TFP} \operatorname{AR}(1)$ process : $z_{t}=\left(1-\rho_{z}\right)+\rho_{z} z_{t-1}+\varepsilon_{t}$

Steady state - closed form solution

Start with the Euler equation:

$$
\frac{1}{c_{t}}=\beta E_{t}\left[\frac{1}{c_{t+1}}\left(1+r_{t+1}\right)\right] \quad \rightarrow \quad 1=\beta(1+r) \quad \rightarrow \quad r=\frac{1}{\beta}-1
$$

From the interest rate equation obtain the k / h ratio:

$$
r=\alpha \boldsymbol{k}^{\alpha-1} h^{1-\alpha}-\delta \quad \rightarrow \quad\left(\frac{k}{h}\right)^{\alpha-1}=\frac{r+\delta}{\alpha} \quad \rightarrow \quad \frac{k}{h}=\left(\frac{\alpha}{r+\delta}\right)^{\frac{1}{1-\alpha}}
$$

From the production function obtain the y / h ratio and then wage:

$$
y=k^{\alpha} h^{1-\alpha} \quad \rightarrow \quad \frac{y}{h}=\left(\frac{k}{h}\right)^{\alpha} \quad \text { and } \quad w=(1-\alpha) \frac{y}{h}
$$

From investment and output accounting eqns. obtain the c / h ratio:

$$
i=\delta k \quad \rightarrow \quad y=c+\delta k \quad \rightarrow \quad \frac{c}{h}=\frac{y}{h}-\delta \frac{k}{h}
$$

Get c from the consumption-hours choice. Then obtain h :

$$
c=B w \quad \rightarrow \quad h=\frac{c}{c / h}
$$

Parameters

- To best compare our two models, we need them to generate identical steady states
- We replace parameter ϕ with parameter B
- We choose the value for B so that it matches $h=1 / 3$
- For this model $B=2.63$

Model comparison: impulse response functions

RBC model IRF: black solid lines
Indivisible labor IRF: red dashed lines

Percentage deviations from steady state (percentage points for r)

Model comparison: moments

	Std. Dev.				Corr. w. y				Autocorr.		
	Data	RBC	Ind	Data	RBC	Ind	Data	RBC	Ind		
y	1.63	1.63	1.63	1.00	1.00	1.00	0.85	0.72	0.72		
c	0.87	0.63	0.57	0.77	0.94	0.92	0.83	0.79	0.80		
i	4.51	5.07	5.28	0.76	0.99	0.99	0.87	0.71	0.71		
k	0.59	0.45	0.46	0.40	0.09	0.08	0.95	0.96	0.96		
h	1.91	0.71	1.13	0.88	0.98	0.98	0.91	0.71	0.71		
w	0.97	0.95	0.57	0.11	0.99	0.92	0.68	0.75	0.80		
z	0.84	1.15	0.88	0.53	1.00	1.00	0.73	0.72	0.72		
$\frac{y}{h}$	1.06	0.95	0.57	0.41	0.99	0.92	0.71	0.75	0.80		

Model comparison: model-generated hours worked

Indivisible labor: summary

- Model enhances hours volatility (but it's still too low)
- Improves correlation of wages and productivity with output
- Slightly decreases empirical match in other dimensions
- Technical advantage: requires smaller TFP shocks
- Philosophical advantage: more "realistic" labor market

Search and matching: introduction

- Labor markets are in a state of constant flux
- At the same time there are job-seeking workers and worker-seeking firms
- Labor markets are decentralized and active search is needed
- Search friction leads to unemployment even in the steady state
- Peter Diamond, Dale Mortensen and Christopher Pissarides were awarded the Nobel Prize in 2010 for developing this model

Labor market status and flows: EU 2018Q4

Labor market status change probabilities: EU 2018Q4

Source: Eurostat

Unemployment and vacancy rates: USA 1948-2019

Labor market fluctuations: USA 1950-2019

Matching function

- Firms create open job positions (openings, vacancies)
- Workers search for jobs
- Both jobs and workers are heterogeneous
\hookrightarrow not every possible match is attractive
- Matching function captures this feature
- New matches M are a function of the pool of unemployed U and pool of vacancies V :

$$
M_{t}=M\left(V_{t}, U_{t}\right)=\chi V_{t}^{\eta} U_{t}^{1-\eta}
$$

where $\chi>0$ and $\eta \in(0,1)$

Job finding and job filling probabilities

- Unemployed workers are interested in job finding probability p :

$$
p_{t}=\frac{M_{t}}{U_{t}}=\chi\left(\frac{V_{t}}{U_{t}}\right)^{\eta}=\chi \theta_{t}^{\eta}=q_{t} \theta_{t}
$$

where $\theta=V / U$ is called labor market tightness

- Firms with vacancies care about job filling probability q :

$$
q_{t}=\frac{M_{t}}{V_{t}}=\chi\left(\frac{V_{t}}{U_{t}}\right)^{\eta-1}=\chi \theta_{t}^{\eta-1}=\frac{p_{t}}{\theta_{t}}
$$

- Dual externality from congestion:
- High number of unemployed decreases p and increases q
- High number of vacancies increases p and decreases q

Employment dynamics

- Ignoring labor market inactivity, employment rate n and unemployment rate u sum to unity:

$$
n_{t}+u_{t}=1 \quad \rightarrow \quad n_{t}=1-u_{t}
$$

- Existing matches are destroyed with exogenous probability s
- New matches increase next period employment:

$$
\begin{aligned}
& n_{t}=n_{t-1}-s n_{t-1}+m_{t-1} \\
& u_{t}=u_{t-1}+s n_{t-1}-m_{t-1}
\end{aligned}
$$

- We can find the steady state unemployment rate as a function of separation and job finding probabilities:

$$
\begin{aligned}
& u=u+s(1-u)-p(\theta) u \\
& u=\frac{s}{s+p(\theta)}
\end{aligned}
$$

- This generates a Beveridge curve: a negative relationship between the unemployment and vacancy rates

Beveridge curve: theory

Graph by Leszek Wincenciak

Beveridge curve: data

Shifts in the US Beveridge curve

Beveridge curve: data

Detrending with Hodrick-Prescott filter takes out structural shifts

Beveridge curve: "estimation"

US Beveridge curve without structural shifts

Firm side

- Assume firms and workers discount future with β
- Period net gain from a filled job equals marginal product of employee mpn less wage w
- Existing matches are destroyed with probability s:

$$
\mathcal{J}_{t}=\left(m p n_{t}-w_{t}\right)+\beta E_{t}\left[(1-s) \mathcal{J}_{t+1}+\boldsymbol{s} \mathcal{V}_{t+1}\right]
$$

- Period net loss from open vacancy is its cost κ
- With probability q the vacancy will be filled:

$$
\mathcal{V}_{t}=-\kappa+\beta E_{t}\left[q_{t} \mathcal{J}_{t+1}+\left(1-q_{t}\right) \mathcal{V}_{t+1}\right]
$$

- Free entry in vacancies ensures that always $\mathcal{V}=0$
- In the steady state $(r=1 / \beta-1)$:

$$
m p n-w=(r+s) \kappa / q(\theta)
$$

Worker side

- Period net gain from employment equals wage w
- Existing matches are destroyed with probability s:

$$
\mathcal{E}_{t}=w_{t}+\beta E_{t}\left[(1-s) \mathcal{E}_{t+1}+s \mathcal{U}_{t+1}\right]
$$

- Period net gain from unemployment equals benefits (and possibly utility from leisure) b
- With probability p an unemployed person finds a job:

$$
\mathcal{U}_{t}=b+\beta E_{t}\left[p_{t} \mathcal{E}_{t+1}+\left(1-p_{t}\right) \mathcal{U}_{t+1}\right]
$$

Wage setting

- The negotiated wage can be anywhere between the gain from unemployment b and the marginal product of employee mpn plus match gain $\kappa \theta$
- Nash bargaining allows to model the outcome of negotiations
- Let $\gamma \in[0,1]$ denote the relative bargaining power of firms
- The negotiated wage is the solution of the problem:

$$
\max _{w_{t}}\left[\mathcal{J}_{t}\left(w_{t}\right)\right]^{\gamma}\left[\mathcal{E}_{t}\left(w_{t}\right)-\mathcal{U}_{t}\right]^{1-\gamma}
$$

- Solving the problem results in:

$$
w_{t}=\gamma b+(1-\gamma)\left(m p n_{t}+\kappa \theta_{t}\right)
$$

- Intuitively: $w \rightarrow b$ if $\gamma \rightarrow 1$ and $w \rightarrow m p n+\kappa \theta$ if $\gamma \rightarrow 0$

Full set of equilibrium conditions

System of 9 equations and 9 unknowns: $\{w, m p n, \theta, \mathcal{J}, q, u, n, m, v\}$

$$
\begin{aligned}
w_{t} & =\gamma b+(1-\gamma)\left(m p n_{t}+\kappa \theta_{t}\right) \\
\mathcal{J}_{t} & =\left(m p n_{t}-w_{t}\right)+(1-s) \cdot \beta E_{t}\left[\mathcal{J}_{t+1}\right] \\
\kappa & =q_{t} \cdot \beta E_{t}\left[\mathcal{J}_{t+1}\right] \\
u_{t} & =1-n_{t} \\
n_{t} & =(1-s) n_{t-1}+m_{t-1} \\
q_{t} & =\chi \theta_{t}^{\eta-1} \\
\theta_{t} & =v_{t} / u_{t} \\
m_{t} & =\chi v_{t}^{\eta} u_{t}^{1-\eta} \\
m p n_{t} & =(1-\rho)+\rho \cdot m p n_{t-1}+\varepsilon_{t}
\end{aligned}
$$

Steady state: key equations

In the steady state the model is fully summarized by the following three key equations:

$$
\begin{aligned}
\text { Beveridge curve (BC) } & : \quad u=\frac{s}{s+p(\theta)} \\
\text { Job (vacancy) creation (JC) } & : \quad w=m p n-(r+s) \frac{\kappa}{q(\theta)} \\
\text { Wage setting (W) } & : \quad w=\gamma b+(1-\gamma)(m p n+\kappa \theta)
\end{aligned}
$$

Steady state: graphical solution

Graph by Leszek Wincenciak

Comparative statics I

Effects of an increase in unemployment benefits ($b \uparrow$) or in workers' bargaining power $(\gamma \downarrow)$:

- Increase in real wage w
- Decrease in labor market tightness θ
- Decrease in vacancy rate v
- Increase in unemployment rate u

Graph by Leszek Wincenciak

Comparative statics II

Effects of an increase in separation rate ($s \uparrow$)
or a decrease in matching efficiency $(\chi \downarrow)$:

- Decrease in real wage w
- Decrease in labor market tightness θ
- Ambiguous effect on vacancy rate v
- Increase in unemployment rate u

Graph by Leszek Wincenciak

Comparative statics III

Effects of an increase in interest rate $(r \uparrow)$
or an increase in impatience $(\rho \uparrow \rightarrow \beta \downarrow)$:

- Decrease in real wage w
- Decrease in labor market tightness θ
- Decrease in vacancy rate v
- Increase in unemployment rate u

Graph by Matthias Hertweck

Comparative statics IV

Effects of an increase in labor productivity ($m p n \uparrow$):

- Increase in real wage w
- Increase in labor market tightness θ
- Increase in vacancy rate v
- Decrease in unemployment rate u

Graph by Matthias Hertweck

Transitional dynamics

Reduced form of the model (with mpn treated as exogenous):

$$
\begin{gathered}
\dot{u}=s(1-u)-\chi \theta^{\eta} \cdot u \\
\dot{\theta}=\frac{\theta}{1-\eta}\left[(r+s)-\gamma(m p n-b) \frac{\chi \theta^{\eta-1}}{\kappa}+(1-\gamma) \chi \theta^{\eta}\right]
\end{gathered}
$$

The dynamic equation for θ is independent of u :
$\dot{\theta}=0$ is a flat line in the (u, θ) space

Transitional dynamics: phase diagram

Graph by Matthias Hertweck

Transitional dynamics: positive productivity shock

Graph by Matthias Hertweck

Parameters

Values come from Shimer (2005, AER)

	Description	Value
χ	matching efficiency	0.45
η	matching elasticity of v	0.28
s	separation probability	0.033
β	discount factor	0.99
$m p n$	steady state marginal product	1
κ	vacancy cost	0.21
b	unemployment benefit	0.4
γ	firm bargaining power	0.28

Implied steady state values

	Description	Value
u	unemployment rate	0.0687
v	vacancy rate	0.0674
m	new matches	0.031
θ	tightness	0.98
p	job finding probability	0.448
q	job filling probability	0.456
w	wage	0.98

Impulse response functions I

Impulse response functions II

Model generated Beveridge curve

Summary

- We have a "realistic" model of the labor market
- Able to match both steady state (average) and some cyclical properties of the labor market
- Replicates the negative slope of the Beveridge curve
- Not enough variation in employment
- Beveridge curve too steep
- Too much variation in wages

Alternative parametrization

Values come from Hagedorn \& Manovskii (2008, AER)

	Description	Value
η	matching elasticity of v	0.45
b	unemployment benefit	0.965
γ	firm bargaining power	0.928

- Firms have very strong bargaining position
- But unemployment gain includes leisure utility
- Steady state unchanged

Hagedorn \& Manovskii: Impulse response functions

Hagedorn \& Manovskii: Beveridge curve

Deviations from Hodrick-Prescott trend (\%)

Mortensen \& Nagypal: Beveridge curve

Mortensen \& Nagypal (2007) set $\eta=0.54$
Model BC replicates slope of the data $B C$:

Summary

- Alternative parametrizations yield better results
- Both unemployment and employment become more volatile
- Volatility of wages is diminished
- Key problem for the search and matching model identified: period-by-period Nash bargaining
- Further extensions make alternative assumptions about the wage setting process

Integration with the RBC framework

- Very easy
- Get mpn from the usual firm problem
- Adjust β for $\beta \frac{\lambda_{t+1}}{\lambda_{t}}$ in the firm's valuation since the latter is the correct stochastic discounting factor
- Solve for labor market variables
- Get back to the RBC part
- Include vacancy costs in the national accounting equation:

$$
y_{t}=c_{t}+i_{t}+\kappa v_{t}
$$

Observation of Fujita

Fujita (2004): model IRF for vacancies is counterfactual

Alternative hiring cost function

- We have assumed linear vacancy costs:

$$
\begin{aligned}
w_{t} & =\gamma b+(1-\gamma)\left(m p n_{t}+\kappa \theta_{t}\right) \\
\frac{\kappa}{q_{t}} & =\beta E_{t}\left[m p n_{t+1}-w_{t+1}+(1-s) \frac{\kappa}{q_{t+1}}\right]
\end{aligned}
$$

- Gertler \& Trigari (2009, JPE) assume convex costs:

$$
\begin{aligned}
x_{t} & \equiv \frac{m_{t}}{n_{t}} \\
w_{t} & =\gamma b+(1-\gamma)\left(m p n_{t}+\frac{\kappa}{2} x_{t}^{2}+p_{t} \kappa x_{t}\right) \\
\kappa x_{t} & =\beta E_{t}\left[m p n_{t+1}-w_{t+1}+(1-s) \kappa x_{t+1}+\frac{\kappa}{2} x_{t}^{2}\right]
\end{aligned}
$$

- They also consider multi-period wage contracts: within each period only a fraction of wage contracts are renegotiated

Gertler \& Trigari: Impulse response functions

Monthly period frequency

Gertler \& Trigari: Beveridge curve (flexible wages)

Gertler \& Trigari: Beveridge curve (staggered wages)

Beveridge curve: data

Gertler \& Trigari: business cycle statistics

	y	w	$l s$	n	u	v	θ	a	i	c
	A. U.S. Economy, 1964:1-2005:1									
Relative standard deviation	1.00	. 52	. 51	. 60	5.15	6.30	11.28	. 61	2.71	. 41
Autocorrelation	. 87	. 91	. 73	. 94	. 91	. 91	. 91	. 79	. 85	. 87
Correlation with y	1.00	. 56	-. 20	. 78	$-.86$. 91	. 90	. 71	. 94	. 81
	B. Model Economy, $\lambda=0$ (Flexible Wages)									
Relative standard deviation	1.00	. 87	. 09	. 10	1.24	1.58	2.72	. 93	3.11	. 37
Autocorrelation	. 81	. 81	. 58	. 92	. 92	. 86	. 90	. 78	. 80	. 85
Correlation with y	1.00	1.00	-. 54	. 59	$-.59$. 98	. 92	1.00	. 99	. 93
	C. Model Economy, $\lambda=8 / 9$ (3 Quarters)									
Relative standard deviation	1.00	. 56	. 57	. 35	4.44	5.81	9.84	. 71	3.18	. 35
Autocorrelation	. 84	. 95	. 65	. 90	. 90	. 82	. 88	. 76	. 86	. 86
Correlation with y	1.00	. 66	-. 56	. 77	$-.77$. 91	. 94	. 97	. 99	. 90
	D. Model Economy, $\lambda=11 / 12$ (4 Quarters)									
Relative standard deviation	1.00	. 48	. 58	. 44	5.68	7.28	12.52	. 64	3.18	. 34
Autocorrelation	. 85	. 96	. 68	. 91	. 91	. 86	. 90	. 74	. 88	. 86
Correlation with y	1.00	. 55	$-.59$. 78	$-.78$. 93	. 95	. 95	. 99	. 90

Summary

- After adding multi-period contracts, Gertler \& Trigari obtain a very good empirical match of the RBC model with search \& matching features
- This is one of the best matches for single-shock models
- Key to the success was:
- Convex vacancy posting
- Staggered (multi-period) wage contracts

Possible further extensions

- Endogenous (non-constant) separation rate
- On-the-job search
- Hours per worker adjustments

Derivation of the wage setting equation I

The negotiated wage is the solution of the problem:

$$
\max _{w_{t}}\left[\mathcal{J}_{t}\left(w_{t}\right)\right]^{\gamma}\left[\mathcal{E}_{t}\left(w_{t}\right)-\mathcal{U}_{t}\right]^{1-\gamma}
$$

Derivatives of \mathcal{J}_{t} and \mathcal{E}_{t} with respect to wage w_{t} :

$$
\begin{array}{ll}
\mathcal{J}_{t}=m p n_{t}-w_{t}+(1-s) \cdot \beta E_{t}\left[\mathcal{J}_{t+1}\right] & \rightarrow \frac{\partial \mathcal{J}_{t}}{\partial w_{t}}=-1 \\
\mathcal{E}_{t}=w_{t}+\beta E_{t}\left[(1-s) \mathcal{E}_{t+1}+s \mathcal{U}_{t+1}\right] & \rightarrow \frac{\partial \mathcal{E}_{t}}{\partial w_{t}}=1
\end{array}
$$

First order condition:

$$
\begin{gathered}
\gamma \mathcal{J}_{t}^{\gamma-1} \cdot \frac{\partial \mathcal{J}_{t}}{\partial w_{t}} \cdot\left(\mathcal{E}_{t}-\mathcal{U}_{t}\right)^{1-\gamma}+\mathcal{J}_{t}^{\gamma} \cdot(1-\gamma)\left(\mathcal{E}_{t}-\mathcal{U}_{t}\right)^{-\gamma} \cdot \frac{\partial \mathcal{E}_{t}}{\partial w_{t}}=0 \\
\gamma\left(\mathcal{E}_{t}-\mathcal{U}_{t}\right)=(1-\gamma) \mathcal{J}_{t}
\end{gathered}
$$

Derivation of the wage setting equation II

Plug in expressions for $\mathcal{E}_{t}, \mathcal{U}_{t}$ and \mathcal{J}_{t} :

$$
\begin{aligned}
& \gamma\left\{\left(w_{t}-b\right)+\beta\left(1-s-p_{t}\right) E_{t}\left[\mathcal{E}_{t+1}-\mathcal{U}_{t+1}\right]\right\} \\
& \quad=(1-\gamma)\left\{\left(m p n_{t}-w_{t}\right)+\beta E_{t}\left[(1-s) \mathcal{J}_{t+1}\right]\right\} \\
& \begin{aligned}
w_{t}-\gamma b+\left(1-s-p_{t}\right) & \beta E_{t}\left[\gamma\left(\mathcal{E}_{t+1}-\mathcal{U}_{t+1}\right)\right] \\
& =(1-\gamma) m p n_{t}+(1-s) \beta E_{t}\left[(1-\gamma) \mathcal{J}_{t+1}\right]
\end{aligned} \\
& \begin{aligned}
w_{t}-\gamma b+\left(1-s-p_{t}\right) & \beta E_{t}\left[(1-\gamma) \mathcal{J}_{t+1}\right] \\
& =(1-\gamma) m p n_{t}+(1-s) \beta E_{t}\left[(1-\gamma) \mathcal{J}_{t+1}\right]
\end{aligned}
\end{aligned}
$$

Derivation of the wage setting equation III

$$
\begin{aligned}
w_{t} & =\gamma b+(1-\gamma)\left\{m p n_{t}+p_{t} \beta E_{t}\left[\mathcal{J}_{t+1}\right]\right\} \\
\kappa / q_{t} & =\beta E_{t}\left[\mathcal{J}_{t+1}\right] \\
w_{t} & =\gamma b+(1-\gamma)\left(m p n_{t}+p_{t} \kappa / q_{t}\right) \\
w_{t} & =\gamma b+(1-\gamma)\left(m p n_{t}+\kappa \theta_{t}\right)
\end{aligned}
$$

