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1 Ramsey-Cass-Koopmans model, continuous time version
Assumptions similar to the Solow-Swan model:

• Closed economy

• No government (for now)

• Single, homogenous final good with its price normalized to 1 in each period (all variables are
expressed in real terms)

• All households supply a unit of labor, number of people equal to number of workers

• Output is produced according to a neoclassical production function

• Two types of representative, optimizing agents:

– Firms
– Households

• Households are solving a utility maximizing problem – we have a well defined welfare measure

1.1 Firms
Representative firms produce according to the neoclassical production function:

Yt = F (Kt, Lt, At)

where Y is real GDP, K is capital stock, L is employment and A denotes the technology/productivity
level. Firms want to maximize their profits:

max Πt = F (Kt, Lt, At)− wtLt − (rt + δ)Kt

Since the neoclassical production function F has the property of constant returns to scale in capital and
labor, we can rewrite the production function in intensive form f (per worker):

yt ≡
Yt
Lt

= 1
Lt
F (Kt, Lt, At) = F

(
Kt

Lt
,
Lt
Lt
, At

)
= F (kt, 1, At) ≡ f (kt)

where y ≡ Y/L denotes GDP per worker and k ≡ K/L denotes capital stock per worker.

The profit maximization problem using per worker variables is:

max Πt = Lt [f (kt)− wt − (rt + δ) kt]

Firms will choose employment level L and capital per worker k given wage w and real interest rate r.

First order conditions:

kt : Lt [f ′ (kt)− (rt + δ)] = 0 → rt = f ′ (kt)− δ
Lt : f (kt)− wt − (rt + δ) kt = 0 → wt = f (kt)− (rt + δ) kt = f (kt)− f ′ (kt) · kt

We can verify that due to perfect competition and constant returns to scale economic profits are zero:

Π = Lt [f (kt)− wt − (rt + δ) kt] = Lt [f (kt)− [f (kt)− f ′ (kt) · kt]− f ′ (kt) · kt] = 0
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1.2 Households
Representative, infinitely lived households (dynasties) solve the following utility maximization problem:

max U =
∫ ∞

0
e−ρtNt

c1−σ
t − 1
1− σ dt

subject to ˙Assetst = wtLt + (1 + rt)Assetst − Ct

where ρ is the discount rate, N denotes population, c stands for consumption per person, σ > 0 is a
parameter of the CRRA utility function, Assets denote total assets of the household sector, r is the real
interest rate, w denotes the wage earned by workers and C = c·N is the total consumption of households.
To simplify notation we will also assume that all agents are working, so that Lt = Nt.

We will assume that the population grows at a constant rate n, and without loss of generality we will
normalize the initial population size to 1 (N0 = 1):

Ṅt
Nt

= n → Nt = entN0 → Nt = ent

The utility function can then be rewritten as:

U =
∫ ∞

0
e−ρtent · c

1−σ
t − 1
1− σ dt =

∫ ∞
0

e−(ρ−n)t c
1−σ
t − 1
1− σ dt

For the utility function to be bounded, we need to assume that ρ > n.

The budget constraint is also easy to reformulate:

˙Assetst = wtLt + rtAssetst − Ct | : Nt
˙Assetst
Nt

= wtLt
Nt

+ rtAssetst
Nt

− Ct
Nt

˙Assetst
Nt

= wt + (1 + rt) at − ct

where a denotes assets per person. Now we need to derive the expression for ˙Assetst/Nt. Let us do this
by looking at a related expression:

ȧt ≡
d (Assetst/Nt)

dt =
˙Assetst ·Nt −Assetst · Ṅt

N2
t

=
˙Assetst
Nt

− Assetst
Nt

· Ṅt
Nt

=
˙Assetst
Nt

− atn

Notice how ˙Assetst/Nt 6= ȧt, as we have to take into account the effects population growth:

˙Assetst
Nt

= ȧt + atn

We can now go back to our budget constraint:

˙Assetst
Nt

= wt + rtat − ct

ȧt + atn = wt + rtat − ct
ȧt = wt + (rt − n) at − ct

We are now ready to solve the problem using the Hamiltonian:

H = e−(ρ−n)t c
1−σ
t − 1
1− σ + λt [wt + (rt − n) at − ct]

where λt has the interpretation of a co-state variable, associated with the state variable a.

2



First order conditions (note well that ∂H/∂a = −λ̇):

∂H
∂ct

= 0 : e−(ρ−n)tc−σt − λt = 0 → λt = e−(ρ−n)tc−σt

∂H
∂at

= −λ̇t : λt (rt − n) = −λ̇t → − λ̇t
λt

= rt − n

Now transform the first order condition for optimal consumption:1

λt = e−(ρ−n)tc−σt | ln (·)

lnλt = − (ρ− n) t− σ ln ct |
d (·)
dt

λ̇t
λt

= − (ρ− n)− σ ċt
ct

ċt
ct

= −λ̇t/λt − ρ+ n

σ

By plugging in the transformed FOC w.r.t. assets we arrive at the following Euler equation:
ċt
ct

= rt − n− ρ+ n

σ
= rt − ρ

σ

The discount rate can be interpreted as a “psychological” interest rate of an agent and it implies that
consumption increases over time if the real interest rate exceeds the “psychological” interest rate. In the
situation where rt > ρ, an agent is willing to save and it means that she consumes less in the present to
consume more in the future. The parameter σ will affect how strongly the difference between real and
“psychological” interest rates influences changes in consumption. The higher the σ is, the smaller are
the changes of consumption in response to the difference between the interest rates.

1.3 General Equilibrium
In a closed economy, the only asset in positive net supply is capital, because all the borrowing and
lending must cancel out within the economy. Hence, equilibrium in the asset market requires a = k. We
will modify the households’ budget constraint accordingly and in the next step plug in the expressions
for prices to get the resource constraint:

ȧt = wt + (rt − n) at − ct
k̇t = wt + (rt − n) kt − ct
k̇t = f (kt)− f ′ (kt) · kt + (f ′ (kt)− δ − n) kt − ct
k̇t = f (kt)− (δ + n) kt − ct

If we go back to the Euler equation, we can replace the real interest rate with the marginal product of
capital net of depreciation:

ċt
ct

= rt − ρ
σ

ċt
ct

= f ′ (kt)− δ − ρ
σ

The dynamics of the entire economy are summed up by the following two equations:

Euler equation : ċt
ct

= f ′ (kt)− δ − ρ
σ

Resource constraint : k̇t = f (kt)− (δ + n) kt − ct

1Here we are using the following property:
d (ln x (t))

dt
=

d ln x

dx
·

dx (t)
dt

=
1
x

· ẋ =
ẋ

x
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1.4 Steady state and transition dynamics
The steady state of an economic system is a situation where all variables grow at constant rates. Often
economists distinguish between the steady state proper and balanced growth path situations, where the
former exhibits zero growth in income per person, while the latter exhibits constant positive growth.

Without technology improvements, variables per person stabilize over time. We can easily find values of
c and k that put the system at rest. Start with the Euler equation:

0 = f ′ (k)− δ − ρ
σ

f ′ (k∗) = δ + ρ

The steady state level of capital per worker is found by equating the marginal product of capital with
the sum of depreciation rate δ and households’ discount rate ρ.

If we assume a specific production function, we can obtain an explicit formula for the steady state level
of capital per worker. For the following Cobb-Douglas production function:

F (K,L) = AKαL1−α

f (k) = Akα

f ′ (k) = αAkα−1

αAkα−1 = δ + ρ

k∗ =
(
δ + ρ

αA

)1/(α−1)
=
(
αA

δ + ρ

)1/(1−α)

If we go back to the Euler equation in the form relating real interest rate and discount rate of households:

ċt
ct

= rt − ρ
σ

we can see that consumption will increase over time whenever r > ρ:

r = f ′ (k)− δ

r > ρ → f ′ (k)− δ > ρ → f ′ (k) > δ + ρ

When the marginal product of capital exceeds its steady state value (δ+ ρ), consumption increases over
time. A glance at the figures below reveals that consumption increases over time for k < k∗ and by
analogy decreases over time for k > k∗:

k∗ k
0

ρ+ δ

f ′(k)

k∗ k
0

c

ċ/c > 0 ċ/c < 0
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If we rearrange the resource constraint, we will find the expression for c given that the capital stock does
not change over time:

k̇t = f (kt)− (δ + n) kt − ct
0 = f (k)− (δ + n) k − c
c = f (k)− (δ + n) k

Let us see what would happen if the consumption was chosen above the level guaranteeing stable capital
over time:

ct > f (kt)− (δ + n) kt
k̇t = f (kt)− (δ + n) kt − ct
k̇t < f (kt) + (δ + n) kt − [f (kt)− (δ + n) kt]
k̇t < 0

If consumption is chosen above the quantity that implies constant capital, capital decreases over time
as investment is lower than effective depreciation. If consumption is chosen below the constant capital
schedule, capital increases over time. The relationship is displayed in the graphs below:

k
0

c

f(k)

(δ + n)k

k
0

c

k̇ < 0

k̇ > 0

We can now join the two schedules and produce the full phase diagram:

k∗ k
0

c∗

c

k∗ k
0

c∗

c

Saddle path

k̇ = 0

ċ = 0
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1.5 Social planner’s solution
The social planner is a hypothetical dictator who aims at maximizing the households’ utility subject to
the technological constraints of the economy. The social planner’s solution is equivalent to the first best
allocation that the economy can achieve from the point of view of households.

We may want to compute this solution for two reasons. First, in some model economies the decentralized
(market / private) solution is not equivalent to the first best allocation. Then we might consider how the
government could influence the choices of private agents to bring their decisions closer to the first best
allocation. Second, in model economies where social planner’s and decentralized solutions coincide, often
the social planner’s problem is easier or faster to solve for and can be simply used as a model solution
technique.

As we will shortly see for ourselves, in the Ramsey model the social planner’s solution is identical to the
decentralized solution.

The social planner aims here to maximize households’ utility subject to the resource constraint:

max U =
∫ ∞

0
e−(ρ−n)t c

1−σ
t − 1
1− σ dt

subject to k̇t = f (kt)− (δ + n) kt − ct

Hamiltonian:
H = e−(ρ−n)t c

1−σ
t − 1
1− σ + λt [f (kt)− (δ + n) kt − ct]

First order conditions (note well that ∂H/∂k = −λ̇):

∂H
∂ct

= 0 : e−(ρ−n)tc−σt − λt = 0 → λt = e−(ρ−n)tc−σt

∂H
∂kt

= −λ̇t : λt [f ′ (kt)− (δ + n)] = −λ̇t → − λ̇t
λt

= f ′ (kt)− (δ + n)

By log-differentiating the FOC w.r.t. consumption we arrive at the standard relationship:

λt = e−(ρ−n)tc−σt | ln (·)

lnλt = − (ρ− n) t− σ ln ct |
d (·)
dt

λ̇t
λt

= − (ρ− n)− σ ċt
ct

ċt
ct

= −λ̇t/λt − ρ+ n

σ

Now we can plug in the FOC w.r.t. capital:

ċt
ct

= f ′ (kt)− (δ + n)− ρ+ n

σ

ċt
ct

= f ′ (kt)− δ − ρ
σ

The social planner’s Euler equation is identical to one obtained for the general equilibrium of the private,
decentralized economy.

The above result also implies that in this model economy the government can do nothing to improve the
welfare of the agents. Keep this result in mind when we will analyze the effects of taxation.
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1.6 Shape of the saddle path
In general, the solution to the Ramsey model cannot be found analytically, but can be obtained using a
wide variety of numerical methods. There is however one case for which an analytical solution exists.

We need to assume that the production function is of the Cobb-Douglas type:

f (k) = Akα → f ′ (k) = αAkα−1

and that the CRRA parameter σ is equal to the elasticity of output with respect to capital α:

σ = α

Then we can “guess-and-verify” that the saddle path is a straight line, that is that the consumption
to capital ratio is constant, which in turn imples that the growth rates of consumption and capital are
identical:

c

k
= const. → ċ

c
= k̇

k

The growth rate of consumption is given by the Euler equation:

ċ

c
= f ′ (k)− δ − ρ

σ
= αAkα−1 − δ − ρ

σ

To obtain the growth rate of capital we need to divide the resource constraint by k:

k̇

k
= f (k)− (δ + n) k − c

k
= Akα−1 − (δ + n)− c

k

Finally, we can use the assumption that σ = α and compare the two equations for growth rates:

αAkα−1 − δ − ρ
α

= Akα−1 − (δ + n)− c

k

−δ + ρ

α
= − (δ + n)− c

k
c

k
= δ + ρ

α
− δ − n

We can indeed verify that the ratio of consumption to capital is given by constant model parameters.
The analytical solution of the model is then given by:

ct =
(
δ + ρ

α
− δ − n

)
kt

k̇t = Akαt − (δ + n) kt − ct

Since empirical studies imply that σ ≈ 2 and α ≈ 1/3, the above example cannot be considered realistic.
However, it helps us derive the following results (see Barro and Sala-i-Martin (2004) for proofs):

• If σ < α (another unrealistic case) then the saddle path is convex and runs below the straight line
connecting (0, 0) with (k∗, c∗).

• If σ > α then the saddle path is concave and runs above the straight line connecting (0, 0) with
(k∗, c∗) and below the k̇ = 0 curve. Additionally, if the economy experiences a one-off increase in
technology level A then consumption increases on impact (this will be important to recall when
studying the Real Business Cycles model).

In the economy where there is no sustained technological progress, parameter σ only matters for the
shape of the saddle path, but does not influence the steady state level of the economy. When we allow
for technological progress, σ will also impact the steady state.
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1.7 Behavior of the saving rate
One of the key advantages of the Ramsey model over the Solow model is that here the saving rate arises
from the optimal behavior of the households, and can vary over time. There is however another case for
which an analytical solution exists, and it involves a constant saving rate. After we demonstrate this
result we will discuss under which conditions saving rate increases or decreases as the economy converges
towards its steady state.

Again, we need to assume that the production function is of the Cobb-Douglas type. Additionally,
suppose that the following relationship holds:

σ = 1/s∗

where s∗ denotes the saving rate in the steady state. Let us first derive its value:

s ≡ y − c
y

→ s∗ = y∗ − (y∗ − δk∗)
y∗

= δk∗

y∗

For the Cobb-Douglas production function we have that (for simplicity A = 1):

k∗ =
(

α

δ + ρ

)1/(1−α)
and y = kα → s∗ = δ (k∗)1−α = δα

δ + ρ

Now we can “guess-and-verify” that under our assumptions the saving rate is indeed constant. First let
us rewrite our two key equations, taking into account our assumptions:

k̇t = (yt − ct)− δkt = s∗ · f (kt)− δkt = s∗ · kαt − δkt → k̇t
kt

= s∗ · kα−1
t − δ

ċt
ct

= f ′ (kt)− δ − ρ
σ

= αkα−1
t − δ − ρ

σ
= s∗

(
αkα−1

t − δ − ρ
)

And now let us take the time derivative of the consumption to output ratio. If the saving rate is indeed
constant, then this time derivative should be equal to 0:

d (ct/yt)
dt = ċt

ct
− ẏt
yt

= ċt
ct
− αk̇t

kt
= s∗

(
αkα−1

t − δ − ρ
)
− α

[
s∗ · kα−1

t − δ
]

= αδ − s∗ (δ + ρ) = 0

which turns out to be the case. Again, since empirical studies imply that σ ≈ 2 but observed saving
(investment) rates are usually smaller than 30%, the above example cannot be considered realistic.
However, it helps us derive the following results (see Barro and Sala-i-Martin (2004) for proofs):

• If σ > 1/s∗ (another unrealistic case) then the saving rate is initially lower but increases as the
economy converges to the steady state.

• If σ < 1/s∗ then the saving rate is initially higher but decreases as the economy converges to the
steady state.

The above result however implies that the speed of convergence is even higher than in the Solow model,
which was already too high compared to what we observe in the data. One can however introduce a
small modification to the utility function. Suppose that there is some level of consumption c̄ which is
necessary for a human to survive. Then the utility function assumes the following Stone-Geary form:

u (c) = (c− c̄)1−σ − 1
1− σ

In economies where y ≈ c̄ (output per person is close to the survival requirement) households will
save very little. Only when output per person becomes sufficiently high, those households will start
saving more (even if σ < 1/s∗). This generates an “inverse-U” convergence pattern: the least developed
countries exhibit relatively low growth rates, while the middle income countries grow the fastest.
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1.8 Allowing for technological progress
Assume that technology A grows at a constant rate g:

Ȧt
At

= g → At = egtA0

Since technology grows over time, both consumption and capital per worker will grow over time. To find
the balanced growth path of the system, we need to utilize variables per effective units of labor:

Capital per effective labor : k̂t ≡
Kt

AtLt
= kt
At

Consumption per effective labor : ĉt ≡
Ct
AtLt

= ct
At

Output per effective labor : ŷt ≡
Yt
AtLt

= yt
At

Wage per effective labor : ŵt ≡
wt
At

The problem of the households is unchanged, but now we want to rewrite the Euler equation in terms
of per effective labor variables. Consider the definitional relationship between consumption per person c
and per effective labor ĉ:

ct = ĉt ·At | ln

ln ct = ln ĉt + lnAt |
d (·)
dt

ċt
ct

=
˙̂ct
ĉt

+ Ȧt
At

=
˙̂ct
ĉt

+ g

We can now use the Euler equation:

˙̂ct
ĉt

= ċt
ct
− g = rt − ρ

σ
− g

˙̂ct
ĉt

= rt − ρ− σg
σ

Now we have to restate the problem of the firm to obtain prices in terms of per effective labor variables:

max Πt = F (Kt, AtLt)− wtLt − (rt + δ)Kt

max Πt = AtLt

[
F

(
Kt

AtLt
, 1
)
− wt
At
− (rt + δ) Kt

AtLt

]
max Πt = AtLt

[
f(k̂t)− ŵt − (rt + δ) k̂t

]
where ŷt = f(k̂t) ≡ F

(
Kt

AtLt
, 1
)
.
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First order conditions:

k̂t : AtLt

[
f ′(k̂t)− (rt + δ)

]
= 0 → rt = f ′(k̂t)− δ

Lt : At

[
f(k̂t)− ŵt − (rt + δ) k̂t

]
= 0 → ŵt = f(k̂t)− (rt + δ) k̂t = f(k̂t)− f ′(k̂t) · k̂t

To find the general equilibrium of the economy, start with the households’ budget constraint in per capita
terms and rewrite in per effective labor terms:

ȧt = wt + (rt − n) at − ct
k̇t = wt + (rt − n) kt − ct | : At
k̇t
At

= wt
At

+ (rt − n) kt
At
− ct
At

k̇t
At

= ŵt + (rt − n) k̂t − ĉt

Let us now find the expression for dk̂t/dt:

˙̂
kt = d (kt/At)

dt = k̇t ·At − kt · Ȧt
A2
t

= k̇t
At
− k̂tg → k̇t

At
= ˙̂
kt + gk̂t

Now let us use the above result in the resource constraint:
˙̂
kt + gk̂t = ŵt + (rt − n) k̂t − ĉt

˙̂
kt = ŵt + (rt − n− g) k̂t − ĉt

Finally, plug in prices:

˙̂
kt = f(k̂t)− f ′(k̂t) · k̂t + (f ′(k̂t)− δ − n− g)k̂t − ĉt
˙̂
kt = f(k̂t)− (δ + n+ g) k̂t − ĉt

And do the same in the Euler equation:

˙̂ct
ĉt

= rt − ρ− σg
σ

˙̂ct
ĉt

= f ′(k̂t)− δ − ρ− σg
σ

The procedure for finding the balanced growth path is very similar to the one before. From the Euler
equation we can obtain the balanced growth path level of capital per effective labor:

0 = f ′(k̂t)− δ − ρ− σg
σ

f ′(k̂∗) = δ + ρ+ σg

From the resource constraint we can obtain the balanced growth path level of consumption per effective
labor:

0 = f(k̂)− (δ + n+ g) k̂ − ĉ
ĉ∗ = f(k̂∗)− (δ + n+ g) k̂∗

To relate it to our previous results, imagine that g = 0 and technology is normalized to 1 (A = 1). Then
k̂ = k and the new expressions reduce to the expressions for the zero technology growth case.

Note how higher rate of technology growth lowers both k̂∗ and ĉ∗. However, you need to remember that
those variables do not impact the welfare of agents directly, as households care for their consumption
per capita c, which increases faster with higher g. Therefore, higher g increases the welfare of agents.
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