

University of Warsaw Faculty of Economic Sciences

Introduction to modern macroeconomics

Advanced Macroeconomics IE: Lecture 1

Marcin Bielecki

Spring 2019

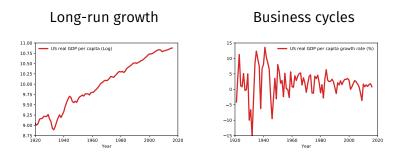
University of Warsaw

Course organization

- · Lecture slides and/or notes available prior to the lecture
- E-mail: mbielecki@wne.uw.edu.pl
- Office hours: Wednesday after lecture, by appointment

Assessment

You will be graded on the basis of two exams


- Midterm exam (50) in April
- Final exam (50) in June
- Additional points (15) can be earned by completing homework assignments

Points from the exams and homeworks add up

You need at least 50 to pass the course

Score	[0, 50)	[50, 60)	[60, 70)	[70, 80)	[80, 90)	[90, 100]
Grade	2	3	3.5	4	4.5	5

We want to understand the mechanisms behind

using the tools of modern macroeconomics

- Microeconomic Foundations
 - Consumption
 - Government sector
 - Neoclassical labor markets
 - Investment
- Economic Growth
- Business Cycles and Labor Markets

- Microeconomic Foundations
- Economic Growth
 - Neoclassical Growth Theory
 - Solow-Swan model
 - Growth empirics
 - Overlapping generations model
 - Ramsey-Cass-Koopmans model
 - New Growth Theory
- Business Cycles and Labor Markets

- Microeconomic Foundations
- Economic Growth
 - Neoclassical Growth Theory
 - New Growth Theory
 - AK models and externalities
 - Expanding product variety models
 - Improving product quality models
 - Diffusion of technology
- Business Cycles and Labor Markets

- Microeconomic Foundations
- Economic Growth
- Business Cycles and Labor Markets
 - Real Business Cycles model
 - Models of unemployment
 - Models of income and wealth inequality
 - New Keynesian model and monetary policy
 - · Coordination failures and financial frictions

Questions?

Modern macroeconomics

- Why is it so different from your previous macro courses?
- Cornerstone of "modern" (post-1970s) macroeconomics

Macroeconomics is microeconomics

(at a high level of aggregation)

¹This section heavily borrows from Lutz Hendricks.

An "old" macroeconomic model

- Consumption function: $C = C_0 + cY$
- Investment function: $I = I_0 bi$
- Identity: Y = C + I + G
- IS curve:

$$(1-c) Y = C_0 + I_0 + G - bi$$

- Real money demand: $L = L_0 + kY hi$
- Real money supply: M/P
- LM curve:

$$M/P = L_0 + kY - hi$$

Shortcomings of the IS-LM model

- Government spending always raises output
 - Supply side constraints are missing
- Consuming more / saving less always raises output
 - The model lacks capital
- Behavior depends on parameters: c, b, k, h and C₀, I₀, L₀
 - Which parameters are stable?
 - Can policy affect these parameters?
- Expectations are not modeled

- Behavior of agents is **derived** from the solutions to their optimization problems
 - Often involving time and uncertainty
- Agents have model-consistent endogenous expectations
- Aggregate outcomes result from individual decisions
- The economy is in general equilibrium
 - Which does not mean it is "at rest"
 - Nor that the outcomes are desirable

What do we gain from this approach?

- Consistency
 - Aggregate relationships satisfy all individual constraints
- Transparency
 - Assumptions about the fundamentals are clearly stated
- Non-arbitrary behavior
 - In old macro, results depend on the assumed behavior
 - In modern macro, behavior is derived
- Testability
 - · Models can be tested against both macro and micro data
- Welfare analysis
 - It is possible to evaluate how a policy change affects the welfare (utility) of each agent

Step 1: Describe the economy

- List the agents (e.g.: households, firms, governments)
- For each agent define (examples after colon mark)
 - Demographics: population grows at rate *n*
 - Preferences: households maximize utility *u*(*c*)
 - Endowments: each household has one unit of time
 - Technologies: output is produced using f(k)
- Define the markets in which agents interact (examples)
 - Households work for firms (labor market)
 - Households purchase goods from firms (goods market)

Step 2: Solve each agent's problem

- Write down the maximization problem each agent solves
 - Households maximize utility, subject to budget constraints
 - Firms maximize profits, subject to production functions
- Derive a set of equations determining the agent's choice
 - · Households' consumption and saving functions
 - Firms' demands for factors of production

How to build a model in 4 simple steps

Step 3: Market clearing – for each market

- Calculate supply and demand by each agent
- Aggregate supply = \sum individual supplies
- Aggregate demand = \sum individual demands
- Aggregate supply = Aggregate demand

Step 4: Define the equilibrium

- Collect all endogenous objects
 - Consumption, output, wage rate, ...
- Collect all equations
 - First order conditions, market clearing conditions
- You should have N equations to solve for N variables
 - Quantities and prices

- We will not consider these general equilibrium models in the first couple of lectures
- First, let us familiarize with Steps 1 and 2
- Very similar to the partial equilibrium approach in microeconomics

Example 1: One period, two goods

Step 1: Describe the economy

- Agents and their demographics
 - A household who lives for one period
- Preferences
 - The household values consumption of two goods with preferences described by the utility function U (c₁, c₂)
- Endowments
 - The household receives endowments of two goods (y_1, y_2)
- Technology
 - There is no production, but goods can be traded
- Markets
 - There are competitive markets for the two goods
 - The prices of the two goods are p_1 and p_2

- The household maximizes U (c₁, c₂) subject to the budget constraint
- Household takes as given the following state variables
 - Market prices for the two goods, p₁ and p₂
 - Endowments y₁ and y₂
- The choice variables are c₁ and c₂
- We can normalize the price of good 1 to unity: $p_1 = 1$ and call the relative price $p \equiv p_2/p_1$

Households' utility maximization problem (UMP)

- Budget constraint: Value of consumption \leq Value of endowments
- The household solves the problem

max
$$U(c_1, c_2)$$

subject to $c_1 + pc_2 \le y_1 + py_2$

- A solution to the problem is the pair (c₁, c₂), conditional on the relative price p and endowments (y₁, y₂)
 - Can we replace the symbol "≤" with "="?
 - Ideas on how to solve this problem?

- Many good approaches to solving such simple problems
- Fewer good approaches as problems get more complex
- One tool to rule them all Lagrange function (Lagrangian)

• Set up the Lagrangian

$$\mathcal{L} = U(c_1, c_2) + \lambda \left[y_1 + p y_2 - c_1 + p c_2 \right]$$

• Derive the first order conditions (FOCs)

$$\frac{\partial \mathcal{L}}{\partial c_1} = \frac{\partial U(c_1, c_2)}{\partial c_1} - \lambda = 0$$
(1)
$$\frac{\partial \mathcal{L}}{\partial c_2} = \frac{\partial U(c_1, c_2)}{\partial c_2} - \lambda p = 0$$
(2)

- The Lagrange multiplier λ has a useful interpretation
 - It is the marginal utility of relaxing the constraint a bit
 - In this example λ is the marginal utility of wealth
- The solution is then a vector (c_1, c_2, λ) that satisfies
 - FOCs (1), (2) and the budget constraint $c_1 + pc_2 = y_1 + py_2$

Simplify the conditions

- Convenient to substitute out the Lagrange multiplier λ
- The ratio of the FOCs implies

$$\frac{\partial U(c_1, c_2) / \partial c_2}{\partial U(c_1, c_2) / \partial c_1} \equiv \frac{U_2}{U_1} = p = \frac{p_2}{p_1}$$
(3)

- This is the familiar tangency condition
 - marginal rate of substitution equals relative price
- Now the solution is a pair (c_1, c_2) that satisfies (3) and the budget constraint $c_1 + pc_2 = y_1 + py_2$

Let's make our example more concrete

Assume logarithmic utility

$$U(c_1,c_2) = \ln c_1 + \beta \ln c_2$$

The FOCs are

$$\frac{\partial \mathcal{L}}{\partial c_1} = \frac{1}{c_1} - \lambda = 0 \qquad \rightarrow \qquad \lambda = \frac{1}{c_1}$$
$$\frac{\partial \mathcal{L}}{\partial c_2} = \beta \frac{1}{c_2} - \lambda p = 0 \qquad \rightarrow \qquad \lambda p = \beta \frac{1}{c_2}$$

Ratio of FOCs

$$p = \beta \frac{c_1}{c_2} \rightarrow c_2 = \frac{\beta}{p} c_1$$

Let's make our example more concrete

Ratio of FOCs

$$c_2 = \frac{\beta}{p}c_1$$

Plug into the budget constraint

$$c_1 + pc_2 = y_1 + py_2$$

 $c_1 + \beta c_1 = y_1 + py_2$

• Optimal consumption levels

$$c_1 = rac{1}{1+eta} \left[y_1 + p y_2
ight]$$
 and $c_2 = rac{eta}{1+eta} \left[rac{y_1}{p} + y_2
ight]$

Example 2: Two periods, one good

Step 1: Describe the economy

- Agents and their demographics
 - A household who lives for two periods
- Preferences
 - The household values consumption in two **time periods** with preferences described by the utility function $U(c_1, c_2)$
- Endowments
 - The household receives **income** in two time periods (y_1, y_2)
- Technology
 - There is no production, but the agent can save or borrow
- Markets
 - Competitive **financial market**: one unit of first period good saved delivers (1 + r) units of second period good
 - First period good costs 1, second period good costs $\frac{1}{1+r}$

The household maximizes

$$U(c_1,c_2) = \ln c_1 + \beta \ln c_2$$

subject to the budget constraint

$$c_1 + \frac{c_2}{1+r} = y_1 + \frac{y_2}{1+r}$$

- · Household takes the following state variables as given
 - Interest rate r
 - Incomes y₁ and y₂
- The choice variables are c_1 and c_2

Solving the household's problem

• Set up the Lagrangian

$$\mathcal{L} = \ln c_1 + \beta \ln c_2 + \lambda \left[y_1 + \frac{y_2}{1+r} - c_1 - \frac{c_2}{1+r} \right]$$

Derive the first order conditions (FOCs)

$$\frac{\partial \mathcal{L}}{\partial c_1} = \frac{1}{c_1} - \lambda = 0$$
$$\frac{\partial \mathcal{L}}{\partial c_2} = \beta \frac{1}{c_2} - \lambda \frac{1}{1+r} = 0$$

• Simplify

$$\lambda = \frac{1}{c_1}$$
 and $\lambda = \beta (1+r) \frac{1}{c_2}$

Obtain the intertemporal condition / Euler equation

$$\frac{1}{c_1} = \beta \left(1+r\right) \frac{1}{c_2} \quad \rightarrow \quad c_2 = \beta \left(1+r\right) c_2$$

Solving the household's problem

Obtain the intertemporal condition / Euler equation

 $c_2 = \beta \left(1 + r \right) c_1$

Combine it with the budget constraint

$$c_{1} + \frac{c_{2}}{1+r} = y_{1} + \frac{y_{2}}{1+r}$$

$$c_{1} + \frac{\beta (1+r) c_{1}}{1+r} = y_{1} + \frac{y_{2}}{1+r}$$

$$c_{1} + \beta c_{1} = y_{1} + \frac{y_{2}}{1+r}$$

Optimal consumption levels

$$c_1 = \frac{1}{1+\beta} \left[y_1 + \frac{y_2}{1+r} \right]$$
$$c_2 = \frac{\beta}{1+\beta} \left[(1+r) y_1 + y_2 \right]$$