Marcin Bielecki, Advanced Macroeconomics IE, Spring 2019 Homework 4 – Solow-Swan and Overlapping Generations models

Problem 1

Let's examine the role of taxes in the Solow-Swan model. Imagine that the behavior of an economy may be summarized by the following four equations:

$$K_t = I_t - \delta K_t$$

$$I_t = s (1 - \tau) Y_t$$

$$C_t = (1 - s) (1 - \tau) Y_t$$

$$Y_t = K_t^{\alpha} (A_t L_t)^{1 - \alpha}$$

Assume that population grows at rate n and technology at rate g, so that $\dot{L}/L = \dot{N}/N = n$ and $\dot{A}/A = g$, respectively. Income in this economy is taxed with rate τ and the tax revenues are used for government consumption which is useless from the point of view of households.

- (a) Transform the four equations into per effective labor form, i.e. divide them by $A_t L_t$. Make use of notational convention $\hat{x}_t \equiv X_t / (A_t L_t)$.
- (b) Find the steady state level of capital per effective labor \hat{k}^* in this economy.
- (c) Discuss the effects of changes in parameters δ , n, g, s, τ on the economy's steady state level of capital per effective labor \hat{k}^* .
- (d) Discuss the effects of changes in parameters δ , n, g, s, τ on the economy's steady state level of consumption per effective labor \hat{c}^* .
- (e) Households care about the level of consumption per capita, i.e. c_t . This variable grows at rate g once the economy reaches its balanced growth path. Discuss whether low g or high g is better from the point of view of households.

Problem 2

Robert Solow in his 1956 article "A Contribution to the Theory of Economic Growth" considered the behavior of economy when output was produced according to other than Cobb-Douglas production functions. One of them was the following Constant Elasticity of Substitution (CES) function:

$$Y_t = \left[aK_t^{\frac{b-1}{b}} + (1-a)L_t^{\frac{b-1}{b}} \right]^{\frac{b}{b-1}}$$

where $a \in (0, 1)$ and b > 0 and for simplicity technology growth rate is set to 0. The CES function reduces to the Cobb-Douglas function in the limit of $b \to 1$.

Saving and investment behaviour of the economy are described respectively as:

$$i_t \equiv s \cdot y_t$$
$$\dot{k}_t = i_t - (\delta + n) k_t$$

where lower case letters i_t , y_t , k_t denote per worker quantities, n denotes population growth, and δ denotes the depreciation rate.

- (a) Transform the production function into per worker form, i.e. divide it by L_t .
- (b) Find the steady state value for capital per worker k_t .
- (c) Show how an increase in the saving rate affects the steady state level of capital per worker (you can use graphical analysis instead of algebra).
- (d) Show how an increase in the population growth rate affects the steady state level of capital per worker (you can use graphical analysis instead of algebra).

Problem 3

Suppose you have a two-period OLG model in discrete time. N_t^y agents are born in time t, where $N_t^y = (1+n)^t N_0^y$. Normalize $N_0^y = 1$ and let n > 0. Preferences of a young agent born in time t are:

$$U_t = \ln c_t^y + \beta \ln c_{t+1}^o$$

The initial old agents want to consume as much as possible. Each young agent is endowed with y units of the consumption good. The old have no endowment whatsoever. There is a storage technology that allows to convert one unit of period t goods into 1 + r units of period t + 1 goods. There is a social security system that is "pay-as-you-go". In each period t the government taxes the young and uses the receipts to make transfers to the old. We consider a per capita tax on the young that is constant over time, i.e. $\tau_t = \tau$ for all $t = 0, 1, 2, \ldots$

- (a) What is the government budget constraint in period t? Write it both in aggregate and in per capita terms.
- (b) Solve for the competitive equilibrium consumption levels. Also find the savings of the representative young agent a_{t+1} .
- (c) What is the effect of an increase in τ on savings of the representative young agent?
- (d) What is the optimal tax rate τ if n < r? Explain why.