Q5, SET 4

Robinson Crusoe decided that he will spend exactly 10 hours per day searching for food. He can spend this time looking for coconuts or fishing. He is able to catch 2 fish or find 3 coconuts in 1 hour. Robinson's utility function is $\boldsymbol{U}(\boldsymbol{F}, \boldsymbol{C})=3 \boldsymbol{F}^{0.6} \boldsymbol{C}^{0.3}$, where F is his daily consumption of fish and C - of coconuts.
a) How many fish should Robinson catch and how many coconuts should he find so that his consumption maximizes his utility?

$$
\begin{gathered}
\frac{F}{2}+\frac{C}{3}=10 \\
\text { or } 3 F+2 C=60
\end{gathered}
$$

Note: We get F divided by 2 and C divided by 3 from the information that Robinson is able to catch 2 fish or 3 coconuts in 1 hour. The value 10 is from the information that he works 10 hours per day.

$$
M R S=\frac{3 * 0.6 F^{-0.4} * C^{0.3}}{3 * 0.3 C^{-0.7} * F^{0.6}}=\frac{2 C}{F}
$$

We know that :

$$
\frac{3}{2}=\mathrm{MRT}_{\mathrm{fc}}=-\mathrm{MC}_{\mathrm{f}} / \mathrm{MC}_{\mathrm{c}}=-\mathrm{P}_{\mathrm{f}} / \mathrm{P}_{\mathrm{c}}=-\mathrm{MU}_{\mathrm{f}} / \mathrm{MU}_{\mathrm{c}}=\mathrm{MRS}_{\mathrm{fc}}=\frac{2 C}{F}
$$

MRT is in relation to producers whereas MRS is in relation to consumers.

$$
\begin{gathered}
\mathrm{MU}_{\mathrm{f}} / \mathrm{P}_{\mathrm{f}}=\mathrm{MU}_{\mathrm{c}} / \mathrm{P}_{\mathrm{c}} \\
\frac{2 C}{3}=\frac{F}{2} \\
F=\frac{4 C}{3} \text { or } 3 \mathrm{~F}=4 \mathrm{C}
\end{gathered}
$$

Put this equation into $3 \mathrm{~F}+2 \mathrm{C}=60$

$$
\frac{3(4 C)}{3}+2 C=60
$$

$$
\begin{gathered}
C=10 \\
F=\frac{4 * 10}{3}=13.3
\end{gathered}
$$

From the calculations above we get $40 / 3$ Fish and 10 Coconuts $\Rightarrow U=3 \mathrm{~F}^{0.6} \mathrm{C}^{0.3}$ $=28.3$

b) Illustrate the equilibrium with a graph.

One day a native inhabitant of another island arrives on Robinson's island. The visitor offers Robinson trade of 3 fish for 1 coconut. However, trade is not free, it costs 1 fish (that must be paid prior to the exchange).
c) Will Robinson decide to trade? Justify your answer and provide a graph.

Since Robinson has comparative advantage in C, he will specialize in coconuts $\Rightarrow \operatorname{maxC}=10^{*} 3=30$

However, if he wish to trade with native inhabitant, he has to pay 1 F before the trade \Rightarrow he cannot spent all his time just on picking coconuts, but he has to catch at least one fish \Rightarrow he will spend 0.5 h on F and 9.5 h on $\mathrm{C} \Rightarrow \operatorname{maxC}=$ $0.5^{*} 1+9.5^{*} 3=28.5$, where 3 is his productivity in C . but he cannot pick 0.5 C $\Rightarrow \operatorname{maxC}=28$

If Robinson catch only fish, his maxF $=10 * 2-1=19$, i.e. 1 is the transaction cost and 2 is his productivity in F. However, he may have more F through the trade rather than catch them directly \Rightarrow If he picks coconuts and exchange them for fish, the $\operatorname{maxF}=28^{*} 3=84$, i.e. 3 is the exchange rate

His new PPF is the following:

$$
F+3 C=84
$$

where $(\mathrm{F}+3 \mathrm{C})$ describes the exchange rate with native inhabitant, while 84 is maxF

In other words,

$$
\frac{F}{9}+\frac{C}{3}=9.5
$$

here $\frac{C}{3}$ means his productivity 3C per hour since he will specialize in coconuts, $\frac{F}{9}$ means his exchange rate $3 \mathrm{C}^{*} 3$ since he will buy F , and $9.5=10-$ 0.5 means the time he may spend on picking coconuts since 0.5 h he has to spent on fishing in order to cover transaction cost.

His new $\mathrm{MRT}=\frac{1}{3} \quad$ (the previous was $\mathrm{MRT}=\frac{3}{2}$)

$$
\begin{gathered}
\mathrm{MRS}=\mathrm{MRT} \\
\frac{2 C}{F}=\frac{1}{3} \\
\boldsymbol{F}=6 C \\
\Downarrow \\
6 C+3 C=84 \\
\mathrm{C}^{*}=84 / 9=9.3 \\
\mathrm{~F}^{*}=56
\end{gathered}
$$

New utility $\mathrm{U}=3 \mathrm{~F}^{0.6} \mathrm{C}^{0.3}=65.6$ is higher than the old one \Rightarrow Robinson will choose to trade.
d) What will Robinson produce?

Due to comparative advantage he will produce coconuts.
e) What will Robinson consume?

His preferences (Cobb-Douglas) enforce him to consume both goods. As in graph and calculations above he will consume 56 units of fish and 9.3 coconuts

