Microeconomics

Lecture 6

Public Goods -- Definition

- ◆ A good is purely public if it is both nonexcludable and nonrival in consumption.
 - Nonexcludable -- all consumers can consume the good.
 - Nonrival -- each consumer can consume all of the good.

Public Goods -- Examples

- Broadcast radio and TV programs.
- National defense.
- Public highways.
- Reductions in air pollution.
- National parks.

Reservation Prices

- A consumer's reservation price for a unit of a good is his maximum willingness-to-pay for it.
- ◆ Consumer's wealth is w.
- Utility of not having the good is U(w,0).
- Utility of paying p for the good is

$$U(w-p,1)$$
.

Reservation price r is defined by

$$U(w,0) = U(w-r,1).$$

Reservation Prices; An Example

Consumer's utility is $U(x_1, x_2) = x_1(x_2 + 1)$. Utility of not buying a unit of good 2 is

$$V(w,0) = \frac{w}{p_1}(0+1) = \frac{w}{p_1}.$$

Utility of buying one unit of good 2 at price p is

$$V(w-p,1) = \frac{w-p}{p_1}(1+1) = \frac{2(w-p)}{p_1}.$$

Reservation Prices; An Example

Reservation price r is defined by

$$V(w,0) = V(w-r,1)$$

Le. by

$$\frac{w}{p_1} = \frac{2(w-r)}{p_1} \Rightarrow r = \frac{w}{2}.$$

When Should a Public Good Be Provided?

- One unit of the good costs c.
- ◆ Two consumers, A and B.
- Individual payments for providing the public good are g_A and g_B.
- ϕ g_A + g_B \geq c if the good is to be provided.

When Should a Public Good Be Provided?

 Payments must be individually rational; i.e.

and
$$U_{A}(w_{A},0) \le U_{A}(w_{A}-g_{A},1)$$

 $U_{B}(w_{B},0) \le U_{B}(w_{B}-g_{B},1).$

♦ Therefore, necessarily $g_A \le r_A$ and $g_B \le r_B$.

When Should a Public Good Be Provided?

lacktriangle And if $U_{
m A}(w_{
m A},0) < U_{
m A}(w_{
m A}-g_{
m A},1)$ and $U_{
m B}(w_{
m B},0) < U_{
m B}(w_{
m B}-g_{
m B},1)$

then it is Pareto-improving to supply the unit of good, so $r_A + r_B > c$ is sufficient for it to be efficient to supply the good.

Private Provision of a Public Good?

- Suppose $r_A > c$ and $r_B < c$.
- Then A would supply the good even if B made no contribution.
- ◆ B then enjoys the good for free; freeriding.

Private Provision of a Public Good?

- \bullet Suppose $r_{\rm A} < c$ and $r_{\rm B} < c$.
- Then neither A nor B will supply the good alone.
- Yet, if $r_A + r_B > c$ also, then it is Pareto-improving for the good to be supplied.
- A and B may try to free-ride on each other, causing no good to be supplied.

- Suppose A and B each have just two actions -- individually supply a public good, or not.
- \diamond Cost of supply c = \$100.
- Payoff to A from the good = \$80.
- Payoff to B from the good = \$65.
- \$80 + \$65 > \$100, so supplying the good is Pareto-improving.

Player B

Buy

Don't Buy

Player A
Don't
Buy

-\$20, -\$35	-\$20, \$65
\$80, -\$35	\$0, \$0

[Don't' Buy, Don't Buy] is the unique NE (inefficient)

- Now allow A and B to make contributions to supplying the good.
- E.g. A contributes \$60 and B contributes \$40.
- Payoff to A from the good = \$20 > \$0.
- ♦ Payoff to B from the good = \$25 > \$0.

Player B

Don't Contribute Contribute

Contribute

Player A

Don't

Contribute

\$20, \$25	-\$60, \$0
\$0, -\$40	\$0, \$0

Two NE: (Contribute, Contribute) and (Don't Contribute, Don't Contribute).

- So allowing contributions makes possible supply of a public good when no individual will supply the good alone.
- But what contribution scheme is best?
- And free-riding can persist even with contributions.

Variable Public Good Quantities

- ◆ E.g. how many broadcast TV programs, or how much land to include into a national park.
- c(G) is the production cost of G units of public good.
- ◆ Two individuals, A and B.
- Private consumptions are x_A, x_B.

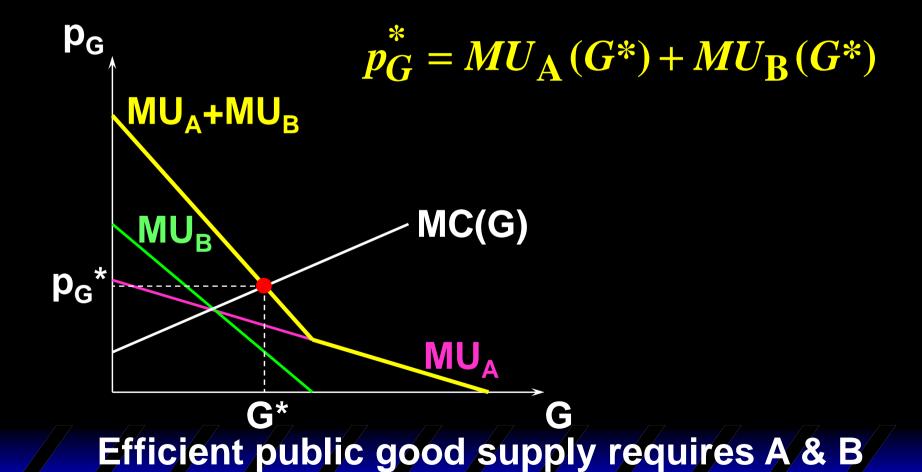
Variable Public Good Quantities

Budget allocations must satisfy

$$x_{A} + x_{B} + c(G) = w_{A} + w_{B}$$
.

- ◆ MRS_A & MRS_B are A & B's marg. rates of substitution between the private and public goods.
- Pareto efficiency condition for public good supply is

$$|MRS_A| + |MRS_B| = MC(G).$$


Variable Public Good Quantities

 Pareto efficiency condition for public good supply is

$$|\mathbf{MRS_A}| + |\mathbf{MRS_B}| = \mathbf{MC}(G)$$
.

- Why?
- ◆ The public good is nonrival in consumption, so 1 extra unit of public good is fully consumed by both A and B.

Efficient Public Good Supply

to state truthfully their marginal valuations.