Vicroeconomics

Lecture 5

Exchange Economies (revisited)

- No production, only endowments, so no description of how resources are converted to consumables.
- General equilibrium: all markets clear simultaneously.
-1st and 2nd Fundamental Theorems of Welfare Economics.

Now Add Production ...

- Add input markets, output markets, describe firms' technologies, the distributions of firms' outputs and profits ... That's not easy!

Robinson Crusoe’s Economy

- One agent, RC.
- Endowed with a fixed quantity of one resource -- 24 hours.
- Use time for labor (production) or leisure (consumption).
- Labor time = L. Leisure time = 24 - L.
-What will RC choose?

Robinson Crusoe's Technology

Coconuts

Technology: Labor produces output (coconuts) according to a concave production function.

Robinson Crusoe's Preferences

Coconuts
RC's preferences: -coconut is a good -leisure is a good

Robinson Crusoe's Preferences

Coconuts

Robinson Crusoe's Choice

Coconuts

Robinson Crusoe's Choice

Coconuts

Robinson Crusoe as a Firm

- Now suppose RC is both a utilitymaximizing consumer and a profitmaximizing firm.
- Use coconuts as the numeraire good; i.e. price of a coconut = \$1.
\checkmark RC's wage rate is w.
-Coconut output level is C.

Robinson Crusoe as a Firm

\star RC's firm's profit is $\pi=C-w L$.
$\diamond \pi=\boldsymbol{C}-w L \Leftrightarrow \boldsymbol{C}=\pi+w L$, the equation of an isoprofit line.

- Slope = + w .
- Intercept $=\pi$.

Isoprofit Lines

Coconuts

Profit-Maximization

Coconuts

Profit-Maximization

Coconuts Isoprofit slope $=$ production function slope

Profit-Maximization

Coconuts Isoprofit slope $=$ production function slope

$$
\begin{aligned}
& \text { i.e. } w=\mathbf{M P}_{L}=1 \times \mathbf{M P}_{L}=\mathbf{M R P}_{L} \text {. } \\
& \pi^{* * *} \\
& \text { demanded of labor is } L^{*} \text { and } \\
& \text { output quantity supplied is } C \text {. } \\
& \text { RC gets } \pi^{*}=C^{*}-w L^{*}
\end{aligned}
$$

Utility-Maximization

- Now consider RC as a consumer endowed with $\$ \pi^{*}$ who can work for \$w per hour.
- What is RC's most preferred consumption bundle?
- Budget constraint is $C=\pi^{*}+w L$.

Utility-Maximization

Coconuts

Utility-Maximization

Coconuts

Utility-Maximization \& ProfitMaximization
-Profit-maximization: Coconut and labor $-\mathbf{w}=\mathrm{MP}_{\mathrm{L}} \quad$ markets both clear.
-quantity of output supplied $=C^{*}$
-quantity of labor demanded $=L^{*}$
-Utility-maximization: $-\mathbf{w}=$ MRS
-quantity of output demanded $=C^{*}$ -quantity of labor supplied = L *

Utility-Maximization \& Profit-

Coconuts

 Maximization $\uparrow \quad$ MRS $=\boldsymbol{w}=\mathbf{M P}_{L}$

Pareto Efficiency

Production Possibilities

- Resource and technological limitations restrict what an economy can produce.
- The set of all feasible output bundles is the economy's production possibility set.
- The set's outer boundary is the production possibility frontier.

Production Possibilities

Coconuts

Fish

Production Possibilities

Coconuts

Fish

Production Possibilities

Coconuts

Fish

Comparative Advantage

-Two agents, RC and Man Friday (MF).

- RC can produce at most 20 coconuts or 30 fish.
- MF can produce at most 50 coconuts or 25 fish.

Comparative Advantage RC

MRPT = $-2 / 3$ coconuts/fish so opp. cost of one more fish is $2 / 3$ foregone coconuts.

RC has the comparative opp. cost advantage in producing fish.

MRPT = -2 coconuts/fish so opp. cost of one more fish is $\mathbf{2}$ foregone coconuts.

Comparative Advantage RC

MRPT = $-2 / 3$ coconuts/fish so opp. cost of one more coconut is $3 / 2$ foregone fish.

MRPT = -2 coconuts/fish so opp. cost of one more coconut is $1 / 2$ foregone fish.

MF has the comparative opp. cost advantage in producing coconuts.

Comparative Advantage

Economy
More producers with different opp. costs "smooth out" the ppf.

Coordinating Production \& Consumption

- The ppf contains many technically efficient output bundles.
- Which are Pareto efficient for consumers?
- MRS = MRPT is necessary for a Pareto optimal economic state.

Decentralized Coordination of Production \& Consumption

-RC and MF jointly run a firm producing coconuts and fish.

- RC and MF are also consumers who can sell labor.
\bullet Price of coconut $=p_{c}$.
\diamond Price of fish $=p_{F}$.
\bullet RC's wage rate $=w_{R C}$ -
\bullet MF's wage rate $=w_{\text {MF }}$.

Decentralized Coordination of Production \& Consumption

$\bullet L_{R C}, L_{M F}$ are amounts of labor purchased from RC and MF.
\bullet Firm's profit-maximization problem is choose $C, F, L_{R C}$ and $L_{M F}$ to
$\max \pi=p_{C} C+p_{F} F-w_{R C} L_{R C}-w_{M F} L_{M F}$.

Decentralized Coordination of Production \& Consumption

$\max \pi=p_{C} C+p_{F} F-w_{R C} L_{R C}-w_{M F} L_{M F}$. Isoprofit line equation is
constant $\pi=p_{C} C+p_{F} F-w_{R C} L_{R C}-w_{M F} L_{M F}$ which rearranges to

Decentralized Coordination of Production \& Consumption

Coconuts

Fish

Decentralized Coordination of Production \& Consumption

Coconuts

Fish

Decentralized Coordination of Production \& Consumption

-So competitive markets, profitmaximization, and utility maximization all together cause

the condition necessary for a Pareto optimal economic state.

Decentralized Coordination of Production \& Consumption

Coconuts
Competitive markets, utilitymaximization and profftmaximization \Rightarrow

