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Optimization without constraints

We will be looking for a local maximum of a function f f : RN → R. This
means that we will be looking for a a such that f (x) ≤ f (a) for any x
arbitrarily close to a.
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One variable case

When we have just one variable in the vector x , the rule is easy:

Theorem

If f : R1 → R1 and all its first partial derivatives are continuously
differentiable on a set which contains a in its interior, then:

1 (Necessary conditions) f has a local maximum (minimum) at a only
if the derivative ∂f (a)/∂x = 0 and if the second derivative is
∂f 2(a)/∂x2 non-positive (non-negative).

2 (Sufficient conditions) f has a local maximum (minimum) at a only
if the derivative ∂f (a)/∂x = 0 and if the second derivative is
∂f 2(a)/∂x2 negative (positive).

If we have more variables, the problem is more complex.
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Many variables

Theorem

If f : RN → R1 and all its first partial derivatives are continuously
differentiable on a set which contains a in its interior, then:

1 (Necessary conditions) f has a local maximum (minimum) at a only
if the gradient matrix ∇f (a) = 0 and if the matrix of second
derivatives [fij(a)]n×n is negative (positive) semidefinite.

2 (Sufficient conditions) f has a local maximum (minimum) at a only
if the gradient matrix ∇f (a) = 0 and if the matrix of second
derivatives [fij(a)]n×n is negative (positive) definite.

Jan Hagemejer Optimization refresher



How to check for positive definiteness? In short:

1 A matrix is PD (ND) if all its eigenvalues are positive (negative)

2 A matrix is PSD (NSD) if all its eigenvalues are greater or equal to
zero (less or equal to zero).

Definition

Eigenvalue of matrix A (symmetric) is a number r which when subtracted
from each of the diagonal entries of A converts A into a singular matrix.
Therefore r is an eigenvalue of A if and only if A− rI is a singular matrix.
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Eigenvalues

To find the r we can find the roots of the characteristic polynomial:

det(A− rI ) = 0

and solve for r . Finding eigenvalues can be a pain if out matrices are
large and/or complicated.
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Easier way

However, to check for PD (ND) we can also use the following rule, that
turns out to be easier in many circumstances, using the so-called
principal minors of matrix.

Definition

Let A be an n × n matrix. A k × k submatrix of A formed by deleting
n− k columns, say columns i1, i2, . . . , in−k and the same n− k rows, rows
i1, i2, . . . , in−k from A is called a kth order principal submatrix of A.
The determinant of a k × k principal submatrix is called a kth order
principal minor of A.
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k-th order leading prinicpal matrix

The k-th order leading prinicpal matrix is obtained by deleting last
n − k rows and last n − k columns from out matrix A.

And now:

Theorem

Let A be and n × n symmetric matrix. Then,

1 A is positive definite if and only if all its n leading principal minors
are positive.

2 A is negative definite if and only if its n leading principal minors
alternate in sign as follows: |A1| < 0, |A2| > 0, |A3| <), . . . ie. the
kth order leading principal minor should have the same sign as
(−1)k .
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Example

Find max of: f (x , y) = −3x2 + xy − 2x + y − y2 + 1

Solution:

The first order conditions (FOCs):

∂f (x , y)

∂x
= −6x + y − 2 = 0

∂f (x , y)

∂y
= x + 1− 2y = 0
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Solution of FOC’s

The solution to the above system of equations:

6(1− 2y) + y − 2 = 0

4− 11y = 0

y = 4/11

and from the first equation:

x = 8/11− 1 = −3/11
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Second order conditions (SOCs)

We need to check the second order conditions. The Hessian matrix:

H =

[
∂f 2(x,y)
∂x2

∂f 2(x,y)
∂yx

∂f 2(x,y)
∂xy

∂f 2(x,y)
∂y2

]
=

[
−6 1
1 −2

]

The first order leading principal matrix(−1)1 ∗ H11 = (−1)(−6) > 0. The
determinant of the second order leading principal matrix:

(−1)2.

∣∣∣∣−6 1
1 −2

∣∣∣∣ = 1 ∗ 11 > 0. Therefore the matrix H is negative

definite and our solution is indeed a maximum.
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Constrained Optimization

The problem:

maximize f (x) subject to equality constraints (note that x is a vector):

to m inequality constraints g i (x) ≤ 0 (note the exact form of the
inequalities)

to k equality constraints hj(x) = 0
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The solution

Form the Lagrange function:

L(x , λ) = f (x)−
m∑
i=1

λig
i (x)−

k∑
j=1

λm+jh
j(x)

And take first derivatives with respect to all x ′s and λ’s.
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The conditions for the local maximum are:

∇f (x)−
m∑
i=1

λi∇g i (x)−
k∑

j=1

λm+j∇hj(x) = 0

λi ≥ 0 for i = 1, . . . ,m, andλi ≥ 0 for i = m + 1, . . . ,m + k

λig
i (x) = 0 for i = 1, . . . ,m and hi (x) = 0 for i = m + 1, . . . ,m + k

Note that the last two conditions guarantee that either λi = 0 and
therefore constraint i is not binding (this only applies to inequality
conditions) or λi > 0 and in that case g i (x) = 0 condition i becomes an
equality condition.
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Example (1 - only equality constraints):

Minimize x2 + y2, subject to x + y − 2 = 0.

min(x2 + y2)

subject to x + y − 2 = 0.

Convert the problem to a minimization problem by putting a minus in
front of the objective function:

L = −x2 − y2 − λ(2− x − y)
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FOC:

[x :] − 2x + λ = 0

[y :] − 2y + λ = 0

[λ :] x + y − 2 = 0

We see that
x = y = 1, λ = 2
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Sufficient second order conditions

Consider a matrix Lij of second partial derivatives of L. We only consider
s constraints that were binding (λi > 0) in our FOC. Consider a matrix
Di to be the (2s + i)× (2s + i) lower right-hand corner submatrix of Lij :

The sufficient condition for x0 to be a strict local minimizer of f
subject to the constraints is (−1)s |Dr | > 0 for r = 1, 2, ..., n − s
(remember - n is the number of variables in x and s is the number
of binding constraints). For example if there are three variables and
one constraint, we have to check for r = 1 and r = 2.

The sufficient condition for x0 to be a local minimizer of f subject
to the constraints is (−1)s |Dr | ≥ 0 for r = 1, 2, ..., n − s. For
example if there are three variables and one constraint, we have to
check for r = 1 and r = 2.
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Sufficient second order conditions (2)

The sufficient condition for x0 to be a strict local maximizer of f
subject to the constraints is (−1)r+s |Dr | > 0 for r = 1, 2, ..., n − s
(remember - n is the number of variables in x and s is the number
of binding constraints). For example if there are three variables and
one constraint, we have to check for r = 1 and r = 2.

The sufficient condition for x0 to be a local maximizer of f subject
to the constraints is (−1)r+s |Dr | ≥ 0 for r = 1, 2, ..., n − s. For
example if there are three variables and one constraint, we have to
check for r = 1

and r = 2.
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SOC

Lij =
−2 0 1

0 −2 1
1 1 0

Not that we have two variables and one constraint, so we need to
consider L2∗1+1 = L3. r = n − s = 2− 1 = 1

And the only determinant to check is D1(3x3 matrix) which is:
0 + 0 + 0 + 2− 0 = 4 and therefore the the only required condition for
minimum is satisfied (−12 ∗ 4 > 0 and the vector (1, 1) is a strict local
maximizer and a minimizer of the original function).
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Example (2)

Maximize f (x , y) = y − x2 subject to: y ≤ 2x − 1, y ≥ 0 and x ≥ 0.

Convert inequalities to ≤ 0 form:

y − 2x + 1 ≤ 0

−y ≤ 0

and
−x ≤ 0.

Solution: Our Lagrangian for this particular problem is:

L(x , y , λ1, λ2, λ3) = y − x2 − λ1(y − 2x + 1)− λ2(−x)− λ3(−y)
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The FOC’s

∂L
∂x = −2x + 2λ1 + λ2 = 0
∂L
∂y = 1− λ1 + λ3 = 0
∂L
∂λ1

= −y + 2x − 1 ≥ 0, λ1 ≥ 0, λ1(y − 2x + 1) = 0
∂L
∂λ2

= x ≥ 0, λ2 ≥ 0, λ2x = 0
∂L
∂λ3

= y ≥ 0, λ3 ≥ 0, λ3y = 0
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Plenty of cases to consider

Note: Either λi is equal to zero OR the ith condition is binding.

But: If λi is greater than zero then the ith condition IS binding.

However, we can rule out some:

Take the second condition. It implies that: 1− λ1 + λ3 = 0. If
λ3 ≥ 0 then λ1 > 0. Therefore we know for sure that the first
inequality constraint is condition is binding: (−1 + 2x − y) = 0.

Therefore λ1 > 0. What about the remaining λ′s? Let us consider cases
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Cases (1)

Case 1: λ1 > 0, λ2 > 0, λ3 > 0:

In that case, x = 0, y = 0, and −1 + 2x − y = 0. This can’t be true. A
contradiction. Case ruled out.

Case 2: λ1 > 0, λ2 = 0, λ3 > 0:

In that case, x > 0, y = 0, and −1 + 2x − y = 0.

Therefore from FOC1:−2x + 2λ1 = 0 and x = λ1 = 1
2 .

In that case: 1− λ1 + λ3 = 0 implies that λ3 = − 1
2 . Contradiction with

λ3 > 0, case ruled out.
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Cases (2)

Case 3: λ1 > 0, λ2 > 0, λ3 = 0:

In that case, x = 0, y > 0, and −1 + 2x − y = 0.

Therefore y = −1. Contradiction. Case ruled out.
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Cases (3) - the only solution

Case 4: λ1 > 0, λ2 = 0, λ3 = 0:

In that case, x > 0, y > 0, and the binding conditions are:

−1 + 2x − y = 0
−2x + 2λ1 = 0

1− λ1 = 0

Therefore λ1 = x = y = 1. λ2 = λ3 = 0.

So (x , y , λ1, λ2, λ3) = (1, 1, 1, 0, 0) is the only solution.
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Example (continued)

The binding FOCs:

−1 + 2x − y = 0
−2x + 2λ1 = 0

1− λ1 = 0

Therefore the matrix of second partial derivatives:

Lij =
2 −1 0
−2 0 2
0 0 −1
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SOCs

We have two variables (n = 2) and one binding constraints (s = 1). We
need to check r = 1, D2∗1+1.

For local maximizer, we need to have (−1)r+s |Dr | > 0, (−1)1+1|D1| > 0.

D1 is the 3x3 matrix and its determinant is:
2 ∗ 1− (−1) ∗ 2 ∗ 0− 0 ∗ (−2) ∗ 0 = 2 and (−1)2 ∗ 2 > 0.

Therefore the (1, 1) is the strict local maximizer.

Jan Hagemejer Optimization refresher


