Optimization refresher

Jan Hagemejer

October 9, 2013

Literature

Reference: The examples are taken from William Novshek, Mathematics for Economists, Academic Press, 1993

Another good reference: Carl P. Simon, Lawrence Blume, Mathematics for Economists, 1994

Optimization without constraints

We will be looking for a local maximum of a function $f f: \mathbb{R}_{N} \rightarrow \mathbb{R}$. This means that we will be looking for a a such that $f(x) \leq f(a)$ for any x arbitrarily close to a.

One variable case

When we have just one variable in the vector x, the rule is easy:

Theorem

If $f: \mathbb{R}_{1} \rightarrow \mathbb{R}_{1}$ and all its first partial derivatives are continuously differentiable on a set which contains a in its interior, then:
(1) (Necessary conditions) f has a local maximum (minimum) at a only if the derivative $\partial f(a) / \partial x=0$ and if the second derivative is $\partial f^{2}(a) / \partial x^{2}$ non-positive (non-negative).
(2) (Sufficient conditions) f has a local maximum (minimum) at a only if the derivative $\partial f(a) / \partial x=0$ and if the second derivative is $\partial f^{2}(a) / \partial x^{2}$ negative (positive).

If we have more variables, the problem is more complex.

Many variables

Theorem

If $f: \mathbb{R}_{N} \rightarrow \mathbb{R}_{1}$ and all its first partial derivatives are continuously differentiable on a set which contains a in its interior, then:
(1) (Necessary conditions) f has a local maximum (minimum) at a only if the gradient matrix $\nabla f(a)=0$ and if the matrix of second derivatives $\left[f_{i j}(a)\right]_{n \times n}$ is negative (positive) semidefinite.
(2) (Sufficient conditions) f has a local maximum (minimum) at a only if the gradient matrix $\nabla f(a)=0$ and if the matrix of second derivatives $\left[f_{i j}(a)\right]_{n \times n}$ is negative (positive) definite.

How to check for positive definiteness? In short:

(1. A matrix is PD (ND) if all its eigenvalues are positive (negative)
(2) A matrix is PSD (NSD) if all its eigenvalues are greater or equal to zero (less or equal to zero).

Definition

Eigenvalue of matrix A (symmetric) is a number r which when subtracted from each of the diagonal entries of A converts A into a singular matrix. Therefore r is an eigenvalue of A if and only if $A-r l$ is a singular matrix.

Eigenvalues

To find the r we can find the roots of the characteristic polynomial:

$$
\operatorname{det}(A-r I)=0
$$

and solve for r. Finding eigenvalues can be a pain if out matrices are large and/or complicated.

Easier way

However, to check for PD (ND) we can also use the following rule, that turns out to be easier in many circumstances, using the so-called principal minors of matrix.

Definition

Let A be an $n \times n$ matrix. A $k \times k$ submatrix of A formed by deleting $n-k$ columns, say columns $i_{1}, i_{2}, \ldots, i_{n-k}$ and the same $n-k$ rows, rows $i_{1}, i_{2}, \ldots, i_{n-k}$ from A is called a k th order principal submatrix of A. The determinant of a $k \times k$ principal submatrix is called a k th order principal minor of A.

k-th order leading prinicpal matrix

The \mathbf{k}-th order leading prinicpal matrix is obtained by deleting last $n-k$ rows and last $n-k$ columns from out matrix A.

And now:

Theorem

Let A be and $n \times n$ symmetric matrix. Then,
(1) A is positive definite if and only if all its n leading principal minors are positive.
(2) A is negative definite if and only if its n leading principal minors alternate in sign as follows: $\left.\left|A_{1}\right|<0,\left|A_{2}\right|>0,\left|A_{3}\right|<\right), \ldots$ ie. the k th order leading principal minor should have the same sign as $(-1)^{k}$.

Example

Find max of: $f(x, y)=-3 x^{2}+x y-2 x+y-y^{2}+1$
Solution:
The first order conditions (FOCs):

$$
\begin{aligned}
& \frac{\partial f(x, y)}{\partial x}=-6 x+y-2=0 \\
& \frac{\partial f(x, y)}{\partial y}=x+1-2 y=0
\end{aligned}
$$

Solution of FOC's

The solution to the above system of equations:

$$
6(1-2 y)+y-2=0
$$

$$
4-11 y=0
$$

$$
y=4 / 11
$$

and from the first equation:

$$
x=8 / 11-1=-3 / 11
$$

Second order conditions (SOCs)

We need to check the second order conditions. The Hessian matrix:

$$
H=\left[\begin{array}{ll}
\frac{\partial f^{2}(x, y)}{\partial x^{2}} & \frac{\partial f^{2}(x, y)}{\partial y x} \\
\frac{\partial f^{2}(x, y)}{\partial x y} & \frac{\partial f^{2}(x, y)}{\partial y^{2}}
\end{array}\right]=\left[\begin{array}{cc}
-6 & 1 \\
1 & -2
\end{array}\right]
$$

The first order leading principal matrix $(-1)^{1} * H_{11}=(-1)(-6)>0$. The determinant of the second order leading principal matrix:
$(-1)^{2} .\left|\begin{array}{cc}-6 & 1 \\ 1 & -2\end{array}\right|=1 * 11>0$. Therefore the matrix H is negative definite and our solution is indeed a maximum.

Constrained Optimization

The problem:
maximize $f(x)$ subject to equality constraints (note that x is a vector):

- to m inequality constraints $g^{i}(x) \leq 0$ (note the exact form of the inequalities)
- to k equality constraints $h^{j}(x)=0$

Form the Lagrange function:

$$
L(x, \lambda)=f(x)-\sum_{i=1}^{m} \lambda_{i} g^{i}(x)-\sum_{j=1}^{k} \lambda_{m+j} h^{j}(x)
$$

And take first derivatives with respect to all $x^{\prime} s$ and λ 's.

$$
\begin{gathered}
\nabla f(x)-\sum_{i=1}^{m} \lambda_{i} \nabla g^{i}(x)-\sum_{j=1}^{k} \lambda_{m+j} \nabla h^{j}(x)=0 \\
\lambda_{i} \geq 0 \text { for } i=1, \ldots, m, \text { and } \lambda_{i} \geq 0 \text { for } i=m+1, \ldots, m+k
\end{gathered}
$$

$$
\lambda_{i} g^{i}(x)=0 \text { for } i=1, \ldots, m \text { and } h^{i}(x)=0 \text { for } i=m+1, \ldots, m+k
$$

Note that the last two conditions guarantee that either $\lambda_{i}=0$ and therefore constraint i is not binding (this only applies to inequality conditions) or $\lambda_{i}>0$ and in that case $g^{i}(x)=0$ condition i becomes an equality condition.

Example (1 - only equality constraints):

Minimize $x^{2}+y^{2}$, subject to $x+y-2=0$.

$$
\min \left(x^{2}+y^{2}\right)
$$

subject to $x+y-2=0$.
Convert the problem to a minimization problem by putting a minus in front of the objective function:

$$
L=-x^{2}-y^{2}-\lambda(2-x-y)
$$

$$
\begin{aligned}
& {[x:]-2 x+\lambda=0} \\
& {[y:]-2 y+\lambda=0} \\
& {[\lambda:] x+y-2=0}
\end{aligned}
$$

We see that

$$
x=y=1, \lambda=2
$$

Sufficient second order conditions

Consider a matrix $L_{i j}$ of second partial derivatives of L. We only consider s constraints that were binding $\left(\lambda_{i}>0\right)$ in our FOC. Consider a matrix D_{i} to be the $(2 s+i) \times(2 s+i)$ lower right-hand corner submatrix of $L_{i j}$:

- The sufficient condition for x^{0} to be a strict local minimizer of f subject to the constraints is $(-1)^{s}\left|D_{r}\right|>0$ for $r=1,2, \ldots, n-s$ (remember $-n$ is the number of variables in x and s is the number of binding constraints). For example if there are three variables and one constraint, we have to check for $r=1$ and $r=2$.
- The sufficient condition for x^{0} to be a local minimizer of f subject to the constraints is $(-1)^{s}\left|D_{r}\right| \geq 0$ for $r=1,2, \ldots, n-s$. For example if there are three variables and one constraint, we have to check for $r=1$ and $r=2$.

Sufficient second order conditions (2)

- The sufficient condition for x^{0} to be a strict local maximizer of f subject to the constraints is $(-1)^{r+s}\left|D_{r}\right|>0$ for $r=1,2, \ldots, n-s$ (remember $-n$ is the number of variables in x and s is the number of binding constraints). For example if there are three variables and one constraint, we have to check for $r=1$ and $r=2$.
- The sufficient condition for x^{0} to be a local maximizer of f subject to the constraints is $(-1)^{r+s}\left|D_{r}\right| \geq 0$ for $r=1,2, \ldots, n-s$. For example if there are three variables and one constraint, we have to check for $r=1$
- and $r=2$.

$$
L_{i j}=\begin{array}{rrr}
-2 & 0 & 1 \\
0 & -2 & 1 \\
1 & 1 & 0
\end{array}
$$

Not that we have two variables and one constraint, so we need to consider $L_{2 * 1+1}=L_{3} . r=n-s=2-1=1$

And the only determinant to check is $D_{1}(3 \times 3$ matrix $)$ which is: $0+0+0+2-0=4$ and therefore the the only required condition for minimum is satisfied $\left(-1^{2} * 4>0\right.$ and the vector $(1,1)$ is a strict local maximizer and a minimizer of the original function).

Example (2)

Maximize $f(x, y)=y-x^{2}$ subject to: $y \leq 2 x-1, y \geq 0$ and $x \geq 0$.
Convert inequalities to ≤ 0 form:

$$
\begin{gathered}
y-2 x+1 \leq 0 \\
-y \leq 0
\end{gathered}
$$

and

$$
-x \leq 0
$$

Solution: Our Lagrangian for this particular problem is:

$$
L\left(x, y, \lambda_{1}, \lambda_{2}, \lambda_{3}\right)=y-x^{2}-\lambda_{1}(y-2 x+1)-\lambda_{2}(-x)-\lambda_{3}(-y)
$$

$$
\begin{array}{lll}
\frac{\partial L}{\partial x}=-2 x+2 \lambda_{1}+\lambda_{2}=0 & \\
\frac{\partial L}{\partial y}=1-\lambda_{1}+\lambda_{3}=0 & \\
\frac{\partial L}{\partial \lambda_{1}}=-y+2 x-1 \geq 0, & \lambda_{1} \geq 0, \quad \lambda_{1}(y-2 x+1)=0 \\
\frac{\partial L}{\partial \lambda_{2}}=x \geq 0, & \lambda_{2} \geq 0, \quad \lambda_{2} x=0 \\
\frac{\partial L}{\partial \lambda_{3}}=y \geq 0, & \lambda_{3} \geq 0, \quad \lambda_{3} y=0
\end{array}
$$

Plenty of cases to consider

Note: Either λ_{i} is equal to zero OR the i th condition is binding.
But: If λ_{i} is greater than zero then the i th condition IS binding.

- However, we can rule out some:
- Take the second condition. It implies that: $1-\lambda_{1}+\lambda_{3}=0$. If $\lambda_{3} \geq 0$ then $\lambda_{1}>0$. Therefore we know for sure that the first inequality constraint is condition is binding: $(-1+2 x-y)=0$.

Therefore $\lambda_{1}>0$. What about the remaining λ^{\prime} s? Let us consider cases

Cases (1)

Case 1: $\lambda_{1}>0, \lambda_{2}>0, \lambda_{3}>0$:
In that case, $x=0, y=0$, and $-1+2 x-y=0$. This can't be true. A contradiction. Case ruled out.

Case 2: $\lambda_{1}>0, \lambda_{2}=0, \lambda_{3}>0$:
In that case, $x>0, y=0$, and $-1+2 x-y=0$.
Therefore from FOC1: $-2 x+2 \lambda_{1}=0$ and $x=\lambda_{1}=\frac{1}{2}$.
In that case: $1-\lambda_{1}+\lambda_{3}=0$ implies that $\lambda_{3}=-\frac{1}{2}$. Contradiction with $\lambda_{3}>0$, case ruled out.

Cases (2)

Case 3: $\lambda_{1}>0, \lambda_{2}>0, \lambda_{3}=0$:
In that case, $x=0, y>0$, and $-1+2 x-y=0$.
Therefore $y=-1$. Contradiction. Case ruled out.

Cases (3) - the only solution

Case 4: $\lambda_{1}>0, \lambda_{2}=0, \lambda_{3}=0$:
In that case, $x>0, y>0$, and the binding conditions are:

$$
\begin{array}{r}
-1+2 x-y=0 \\
-2 x+2 \lambda_{1}=0 \\
1-\lambda_{1}=0
\end{array}
$$

Therefore $\lambda_{1}=x=y=1 . \lambda_{2}=\lambda_{3}=0$.
So $\left(x, y, \lambda_{1}, \lambda_{2}, \lambda_{3}\right)=(1,1,1,0,0)$ is the only solution.

Example (continued)

The binding FOCs:

$$
\begin{array}{r}
-1+2 x-y=0 \\
-2 x+2 \lambda_{1}=0 \\
1-\lambda_{1}=0
\end{array}
$$

Therefore the matrix of second partial derivatives:

$$
L_{i j}=\begin{array}{ccc}
2 & -1 & 0 \\
-2 & 0 & 2 \\
0 & 0 & -1
\end{array}
$$

We have two variables ($n=2$) and one binding constraints $(s=1)$. We need to check $r=1, D_{2 * 1+1}$.
For local maximizer, we need to have $(-1)^{r+s}\left|D_{r}\right|>0,(-1)^{1+1}\left|D_{1}\right|>0$.
D_{1} is the 3×3 matrix and its determinant is: $2 * 1-(-1) * 2 * 0-0 *(-2) * 0=2$ and $(-1)^{2} * 2>0$.
Therefore the $(1,1)$ is the strict local maximizer.

