CGE models in linearized form

Jan Hagemejer

May 3, 2010

Model in non-linear form:

Consumer

Budget constraint

$$
\begin{equation*}
P W \cdot W=I N C \tag{1}
\end{equation*}
$$

Consumer price index

$$
\begin{equation*}
P W=\frac{1}{A}\left[\frac{P_{X}}{\alpha_{X}}\right]^{\alpha_{X}}\left[\frac{P_{Y}}{\alpha_{Y}}\right]^{\alpha_{Y}} \tag{2}
\end{equation*}
$$

Income of consumers

$$
\begin{equation*}
I N C=P_{K} \omega_{K}+P_{L} \omega_{L} \tag{3}
\end{equation*}
$$

Producer and market clearing

Zero profit condition $(P=M C$, for $j=X, Y)$ for $Y=1$:

$$
\begin{equation*}
P_{j}=\frac{1}{B_{j}}\left[\frac{P_{L}}{\beta_{L, j}}\right]^{\beta_{L, j}}\left[\frac{P_{K}}{\beta_{K, j}}\right]^{\beta_{K, j}} \tag{4}
\end{equation*}
$$

Market clearing (for factor $i=K, L$):

$$
\begin{equation*}
\omega_{i}=\beta_{i, X} \frac{P_{X} X S}{P_{i}}+\beta_{i, Y} \frac{P_{Y} Y S}{P_{i}} \tag{5}
\end{equation*}
$$

Market clearing for goods.

$$
\begin{equation*}
X S=\alpha_{X} \frac{P W \cdot W}{P_{X}}, Y S=\alpha_{Y} \frac{P W \cdot W}{P_{Y}} \tag{6}
\end{equation*}
$$

Solution of 1-6 ensures model equilibrium.

Linearization: budget constraint

- capital letters: levels, lower case letters: percentage changes:
-

$$
p=\frac{\Delta P}{P}
$$

- Start linearization from 1 :

$$
p w+w=i n c
$$

- How do we get this? Lest totally differentiate:

$$
d P W \cdot W+d W \cdot P W=d I N C
$$

Linearization

Divide both sides by INC:

$$
d P \cdot W / I N C+d W \cdot P / I N C=d I N C / I N C
$$

Substitute: $I N C=P W \cdot W$

$$
\begin{gather*}
\frac{d P W \cdot W}{P W \cdot W}+\frac{d W \cdot P W}{P W \cdot W}=i n c \\
p w+w=i n c \tag{7}
\end{gather*}
$$

Linearization: price index

Linearization of 2 is a bit more difficult:
$d P W=\alpha_{X} \frac{1}{A}\left[\frac{1}{\alpha_{X}}\right]^{\alpha_{X}} P_{X}^{\alpha_{X}-1}\left[\frac{P_{Y}}{\alpha_{Y}}\right]^{\alpha_{Y}} d P_{X}+\alpha_{Y} \frac{1}{A}\left[\frac{1}{\alpha_{Y}}\right]^{\alpha_{Y}} P_{Y}^{\alpha_{Y}-1}\left[\frac{P_{X}}{\alpha_{X}}\right]^{\alpha_{X}} d P_{Y}$
Divide by PW:

$$
\begin{gathered}
p w=\frac{\alpha_{X} \frac{1}{A}\left[\frac{1}{\alpha_{X}}\right]^{\alpha_{X}} P_{X}^{\alpha_{X}-1}\left[\frac{P_{Y}}{\alpha_{Y}}\right]^{\alpha_{Y}} d P_{X}}{\frac{1}{A}\left[\frac{P_{X}}{\alpha_{X}}\right]^{\alpha_{X}}\left[\frac{P_{Y}}{\alpha_{Y}}\right]^{\alpha_{Y}}+\frac{\alpha_{Y} \frac{1}{A}\left[\frac{1}{\alpha_{Y}}\right]^{\alpha_{Y}} P_{Y}^{\alpha_{Y}-1}\left[\frac{P_{X}}{\alpha_{X}}\right]^{\alpha_{X}} d P_{Y}}{\frac{1}{A}\left[\frac{P_{X}}{\alpha_{X}}\right]^{\alpha_{X}}\left[\frac{P_{Y}}{\alpha_{Y}}\right]^{\alpha_{Y}}}} \begin{array}{c}
p w=\frac{\alpha_{X} d P_{X}}{P_{X}}+\frac{\alpha_{Y} d P_{Y}}{P_{Y}}
\end{array} .
\end{gathered}
$$

which gives:

$$
\begin{equation*}
p w=\alpha_{X} p_{X}+\alpha_{Y} p_{Y} \tag{8}
\end{equation*}
$$

Linearization: income

Eqaution 3:

$$
d I N C=\omega_{K} d P_{K}+P_{K} d \omega_{K}+P_{L} d \omega_{L}+\omega_{L} d P_{L}
$$

Divide by INC :

$$
\begin{gathered}
\text { inc }=\frac{\omega_{K} d P_{K}}{I N C}+\frac{P_{K} d \omega_{K}}{I N C}+\frac{P_{L} d \omega_{L}}{I N C}+\frac{\omega_{L} d P_{L}}{I N C} \\
i n c=\frac{P_{K} \cdot \omega_{K} d P_{K}}{I N C \cdot P_{K}}+\frac{\omega_{K} \cdot P_{K} d \omega_{K}}{I N C \cdot \omega_{K}}+\frac{\omega_{L} \cdot P_{L} d \omega_{L}}{I N C \cdot \omega_{L}}+\frac{P_{L} \cdot \omega_{L} d P_{L}}{I N C \cdot P_{L}}
\end{gathered}
$$

So ($s C_{I N C, K}$ oraz $s C_{I N C, L}$) are the factor shares in income:

$$
\begin{equation*}
i n c=\left(p_{K}+\frac{d \omega_{K}}{\omega_{K}}\right) \cdot s C_{I N C, K}+\left(p_{L}+\frac{d \omega_{L}}{\omega_{L}}\right) \cdot s C_{I N C, L} \tag{9}
\end{equation*}
$$

Linearization: zero profit

$$
P_{j}=\frac{1}{B_{j}}\left[\frac{P_{L}}{\beta_{L, j}}\right]^{\beta_{L, j}}\left[\frac{P_{K}}{\beta_{K, j}}\right]^{\beta_{K, j}}
$$

We can rewrite as

$$
\begin{equation*}
p_{j}=\beta_{L, j} p_{L}+\beta_{K, j} p_{K} \tag{10}
\end{equation*}
$$

Linearization: market clearing

$$
\begin{gather*}
X S=\alpha_{X} \frac{P W \cdot W}{P_{X}}, Y S=\alpha_{Y} \frac{P W \cdot W}{P_{Y}} \\
d X S=\alpha_{X}\left(\frac{P W}{P_{X}} d W+\frac{W}{P_{X}} d P W-\frac{P W \cdot W}{P_{X}} \cdot \frac{d P X}{P_{X}}\right) \|: X S \\
x s=w+p w-p_{X} y s=w+p w-p_{Y} \tag{11}
\end{gather*}
$$

We see the price elasticity of demand equal to one.

Linearization: factor market

We linearize equation

$$
\omega_{i}=\beta_{i, X} \frac{P_{X} X S}{P_{i}}+\beta_{i, Y} \frac{P_{Y} Y S}{P_{i}}
$$

So: (for factor $i=K, L$):

$$
\begin{align*}
& d \omega_{i}=\beta_{i, X}\left(\frac{P_{X} d X S}{P_{i}}+\frac{d P_{X} X S}{P_{i}}-\frac{P_{X} X S}{P_{i}} \frac{d P_{i}}{P_{i}}\right)+\beta_{i, Y}\left(\frac{P_{Y} d Y S}{P_{i}}+\frac{d P_{Y} Y S}{P_{i}}-\frac{P_{Y} Y S}{P_{i}} \frac{d P_{i}}{P_{i}}\right) \\
& d \omega_{i}=\beta_{i, X}\left(P_{X} d X S+d P_{X} X S-P_{X} X S \frac{d P_{i}}{P_{i}}\right)+\beta_{i, Y}\left(P_{Y} d Y S+d P_{X} Y S-P_{X} X S \frac{d P_{i}}{P_{i}}\right) \\
& \qquad d \omega_{i} / w_{i}=s w_{i, X}\left(x s+p_{s}\right)+s w_{i, Y}\left(x s+p_{s}\right)-p_{i} \tag{12}\\
& \text { where: } s w_{i, X}=\frac{\beta_{i, X} P_{X} X S}{\beta_{i, X} P_{X} X S+\beta_{i, Y} P_{Y} Y S} \text { and } \\
& s w_{i, Y}=\frac{\beta_{i, Y} P_{Y} Y S}{\beta_{i, X} P_{X} X S+\beta_{i, Y} P_{Y} Y S} .
\end{align*}
$$

The linearized model

$$
\begin{gather*}
p w+w=i n c \tag{13}\\
p w=\alpha_{X} p_{X}+\alpha_{Y} p_{Y} \tag{14}\\
i n c=\left(p_{K}+\frac{d \omega_{K}}{\omega_{K}}\right) \cdot s c_{I N C, K}+\left(p_{L}+\frac{d \omega_{L}}{\omega_{L}}\right) \cdot s c_{I N C, L} \tag{15}\\
p_{j}=\beta_{L, j} p_{L}+\beta_{K, j} p_{K} \tag{16}\\
x s=w+p w-p_{X} y s=w+p w-p_{Y} \tag{17}\\
d \omega_{i} / w_{i}=s w_{i, X}\left(x s+p_{s}\right)+s w_{i, Y}\left(x s+p_{s}\right)-p_{i} \tag{18}
\end{gather*}
$$

The linearized model

- The Cobb-Douglas shares will be calibrated as before
- We still have to compute from SAM:
$s w_{i, X}=\frac{\beta_{i, X} P_{X} X S}{\beta_{i, X} P_{X} X S+\beta_{i, Y} P_{Y} Y S}$ and $s w_{i, Y}=\frac{\beta_{i, Y} P_{Y} Y S}{\beta_{i, X} P_{X} X S+\beta_{i, Y} P_{Y} Y S}$.
- $s c_{I N C, K}=\frac{P_{K} \omega_{K}}{I N C}$ and $s c_{I N C, L}=\frac{P_{L} \omega_{L}}{I N C}$
- In our model all variables in the benchmark run will be equal to zero
- The reactions to shocks will be all expressed in percentage changes (multiply by initial levels to recover post-simulation levels).

