#### Introduction to GTAP

Jan Hagemejer

May 3, 2010

#### Basic features

It describes the world (global) economy

- consisting of regional economies (naming convention)
- each consisting of many producers
- each governed by a regional household taking decisions about the private and public cosumption and savings
- each economy has the same theorethical structure (but different size and parameters).

### Basic features

- Standard GTAP assumptions:
  - perfect competition, constant returns to scale
  - static model, no intertemporal choice, no dynamics
  - international trade in differentiated products (Armington assumption)
- Non-standard features
  - Constant Difference of Elasticities (CDE)
  - Transport sector
  - Global bank

### Regional household

- ...is an entity that
  - owns the factors of production and can tax other entities (firms, activities)
  - decides on the consumption expenditure

# RH: preferences

#### The regional household

- Allocates expenditures on
  - private consumption (PRIVEXP)
  - public consumption (GOVEXP)
  - savings (SAVE)

### RGD: Preferences



Source: Brockemeier, 2001, GTAP TP 8



# Circular flow in the closed economy



## Closed economy with taxes

#### RH can tax:

- Private consumption
- Public consumption
- Producers

RH owns factors so taxes only distort prices
Tax revenues have nothing to do with govt consumption.

## Market prices/Agent prices

#### Model is built along these lines

- Agents make transactions through markets
- Each transaction is actually two transactions agent-market-agent
- In transactions seller-market
  - agent's price is the seller price
  - market price is the seller price plus taxes
- In transactions market-buyer
  - agent's price is the buyer price
  - market price is the buyer price less taxes
- In an open economy there are also world prices

## Closed economy with taxes



### Open economy

- In an open economy
  - Each agent imports and exports (np. VDPA i VIPA)
  - Entreprises export final and intermediate goods and import intermediate goods
  - RH taxes imports and exports
  - Savings go to the global banks
  - Global bank finances investment
  - Transport sector earns the difference between FOB and CIF price.



### Sets

- Sets:
  - REG: POL, EU, ROW
  - TRAD\_COMM (dobra handlowe: np. food, mnfcs, svcs)
  - MARG COMM (svces)
  - NMRG\_COMM (food, mfcs)
  - ENDW COMM (land, unsklab, sklab, capital, NatRes)
  - ENDWS\_COMM (land, NatRes)
  - CGDS\_COMM (cgds)
  - PROD\_COMM

### **GTAP.TAB**

| DEMD_COMM      |              | İ         |
|----------------|--------------|-----------|
| ENDW_COMM      | <del>-</del> | CGDS_COMM |
| NSAV_COI       | <br>ММ<br>   |           |
| ·              |              | PROD_COMM |
|                |              |           |
|                |              |           |
| ENDW_COMM      |              |           |
| ENDWM_COMM   E | NDWS_COMM    |           |
|                | ĺ            |           |

Sets
Accounting identities
Demands
Zero profits
Incomes and expenditures

## Model equations

- Can be grouped into
  - Accounting relations
  - Price equations
  - Market clearing equations
  - Zero profit equations

## Distribution of output

- Value of output in agents price equals the value of output at market price: VOA(i, r) + PTAX(i, r) = VOM(i, r)
- VOM is equal to sales in the domestic and foreign markets and the use by the transport sector  $VOM(i,r) = VDM(i,r) + VST(i,r) + \sum_s VXMD(i,r,s)$
- The world price contains the export tax/subsidy VXMD(i, r, s) + XTAXD(i, r, s) = VXWD(i, r, s)
- Import price includes the transport costs VXWD(i, r, s) + VTWR(i, r, s) = VIWS(i, r, s)
- The market price of the import good includes the tariff VIWS(i, r, s) + MTAX(i, r, s) = VIMS(i, r, s)
- All the uses of imports are equal to total imports  $\sum_{r} \textit{VIMS}(i,r,s) = \textit{VIM}(i,s) = \textit{VIPM}(i,s) + \textit{VIGM}(i,s) + \sum_{j} \textit{VIFM}(i,j,s)$



### Linearization

Equation  $VOM(i,r) = VDM(i,r) + VST(i,r) + \sum_{s} VXMD(i,r,s)$  can be rewritten:

$$PM(i,r) \cdot QO(i,r) = PM(i,r) \left[ QDS(i,r) + QST(i,r) + \sum_{s} QXS(i,r,s) \right]$$

Divide by PM(i,r):

$$QO(i,r) = QDS(i,r) + QST(i,r) + \sum_{s} QXS(i,r,s)$$

Linearizng:

$$qo(i,r) \cdot QO(i,r) = qds(i,r) \cdot QDS(i,r) + qst(i,r) \cdot QST(i,r) + \sum_{s} qxs(i,r,s) \cdot QXS(i,r,s),$$
 where  $qo(i,r) = \frac{dQO(i,r)}{QO(i,r)}$  and same for other quantities.

### Demand

#### Regional household

• Private consumption expenditures VPA(i,s) = VDPM(i,s) + DPTAX(i,s) + VIPA(i,S) + IPTAX(i,s) = VDPM(i,s) + VIPM(i,s)

#### Govt:

• Govt expenditures VGA(i,s) = VDGM(i,s) + DGTAX(i,s) + VIGA(i,S) + IGTAX(i,s) = VDGM(i,s) + VIGM(i,s)

#### **Firms**

VFA - value of firms purchases at agent's prices:

- For  $i \in TRAD\_COMM$ : VFA(i,j,s) = VDFA(i,j,s) + DFTAX(i,j,s) + VIFA(i,j,s) + IFTAX(i,j,s) = VDFM(i,j,s) + VIFM(i,j,s)
- For  $i \in ENDW\_COMM :: VFA(i,j,s) = VFM(i,j,s) + ETAX(i,j,s)$

## Zero profits

• for  $j \in PROD$ 

$$VOA(j,s) = \sum_{i \in TRAD} VFA(i,j,s) + \sum_{i \in ENDW} VFA(i,j,s)$$

• for  $i \in ENDW$ 

$$\sum_{j \in PROD} VFM(i, j, s) = VOM(i, s) - HTAX(i, s) = VOA(i, s)$$

### Incomes and expenditures

Regional expenditures

$$EXPENDITURE(r) = \sum_{i \in trad} [VPA(i, r) + VGA(i, r)] + SAVE(r) =$$

equals regional income

$$= INCOME(r)$$

Income consists of

- factor income minus depreciation
- taxes



Sets
Accounting identities
Demands
Zero profits
Incomes and expenditures

INCOME 
$$(r)$$
 = 
$$\sum_{i \in ENDW} VOA(i,r) - VDEP(r)$$
+ 
$$\sum_{i \in NSAV} VOM(i,r) - VOA(i,r)$$

$$+ \sum_{j \in PROD} \sum_{k \in ENDW} VFA(i,j,r) - VFM(i,j,r)$$
+ 
$$\sum_{i \in TRAD} VIPA(i,r) - VIPM(i,r)$$
+ 
$$\sum_{j \in PROD} \sum_{k \in TRAD} VIFA(i,j,r) - VIPM(i,j,r)$$
+ 
$$\sum_{j \in PROD} \sum_{k \in TRAD} VIFA(i,j,r) - VIPM(i,j,r)$$
+ 
$$\sum_{j \in PROD} \sum_{k \in TRAD} VIPA(i,j,r) - VIPM(i,j,r)$$
+ 
$$\sum_{j \in PROD} \sum_{k \in TRAD} VIPA(i,j,r) - VIPM(i,j,r)$$
+ 
$$\sum_{j \in PROD} \sum_{k \in TRAD} VIPA(i,j,r) - VIPM(i,j,r)$$

#### Production structure

# Production structure



### Production function

CES has this linearized form

$$q_1 = \sigma(p - p_1) + q,$$

where  $q_1$  is the factor demand, q is output volume, p i  $p_1$  are output and factor prices, and  $\sigma$  is the elasticity of substitution.

- Quite handy. Special cases:
  - Cobb-Douglas:  $\sigma = 1$
  - Leontief:  $\sigma = 0$
- All producer equation will have:
  - demand equation
  - cost equation (like in our models in GAMS)

### Value added and intermediate use

#### Factor demand

```
EQUATION ENDWDEMAND
# Demands for endowment commodities
(all,i,ENDW_COMM) (all,j,PROD_COMM) (all,r,REG)
qfe(i,j,r)
= qva(j,r) - ESUBVA(j) [pfe(i,j,r) - pva(j,r)];

EQUATION VAPRICE
# Effective price of primary factor composite
# in each sector/region
(all,j,PROD_COMM) (all,r,REG)
pva(j,r)
= sum(k,ENDW_COMM, SVA(k,j,r) * pfe(k,j,r));
```

### Domestic and imported intermediate goods

```
Equation INDIMP
# industry j demands for composite import i #
(all,i,TRAD_COMM)(all,j,PROD_COMM)(all,s,REG)
    afm(i.i.s) = af(i.i.s)
       - ESUBD(i) * [pfm(i,j,s) - pf(i,j,s)];
Equation INDDOM
# industry j demands for domestic good i #
(all,i,TRAD_COMM)(all,j,PROD_COMM)(all,s,REG)
    qfd(i,j,s) = qf(i,j,s)
       - ESUBD(i) * [pfd(i,j,s) - pf(i,j,s)];
Equation ICOMPRICE
# industry price for composite commodities #
(all,i,TRAD_COMM)(all,j,PROD_COMM)(all,r,REG)
   pf(i,j,r) = FMSHR(i,j,r) * pfm(i,j,r)
       + [1 - FMSHR(i,j,r)] * pfd(i,j,r);
```

### Import aggregate

```
Equation IMPORTDEMAND
# regional demand for disaggregated
# imported commodities by source (HT 29) #
(all,i,TRAD_COMM)(all,r,REG)(all,s,REG)
    qxs(i,r,s)
        = -ams(i,r,s) + qim(i,s)
        - ESUBM(i) * [pms(i,r,s)
                    - ams(i,r,s) - pim(i,s)];
Equation DPRICEIMP
# price for aggregate imports (HT 28) #
(all,i,TRAD_COMM)(all,s,REG)
   pim(i,s)
       = sum(k,REG, MSHRS(i,k,s)
                 * [pms(i,k,s) - ams(i,k,s)]);
```

#### Preferences

