Example small open production economy with Cobb-Douglas function

Consider an economy producing two goods: 1 and 2 using two factors of production: L and K. The factor prices will be denoted by w_{L} and w_{K}. The prices of final goods are exogeneous (small open economy) and equal to p_{1} and p_{2}. The firms producing goods 1 and 2 can sell any amount of goods at these prices. The total endoments of factors L and K are equal to ω_{L} and ω_{K}. Technologies are: $q_{1}=z_{L 1}^{\alpha_{1}} z_{K 1}^{1-\alpha_{1}}$ and $q_{2}=z_{L 2}^{\alpha_{1}} z_{K 2}^{1-\alpha_{2}}$. We assume that $\alpha_{1}>\alpha_{2}$.

Step 1: determine the cost functions and factor demads of the two firms.

How? for both firms do the cost minimization - fortunately we know the results already. The problem is (for firm 1, we have a similar one for firm 2):

$$
\begin{equation*}
\mathcal{L}_{1}=w_{L} z_{L 1}+w_{K} z_{K 1}-\lambda\left(z_{L 1}^{\alpha_{1}} z_{K 1}^{1-\alpha_{1}}-q_{1}\right) \tag{1}
\end{equation*}
$$

and the solution to the problem is:

$$
\begin{gather*}
z_{L 1}=\alpha_{1} \frac{C_{1}\left(w_{L}, w_{K}\right)}{w_{L}}, \tag{2}\\
z_{K 1}=\left(1-\alpha_{1}\right) \frac{C_{1}\left(w_{L}, w_{K}\right)}{w_{K}}, \tag{3}
\end{gather*}
$$

where

$$
\begin{equation*}
C_{1}\left(w_{L}, w_{K}, q_{1}\right)=\alpha_{1}^{-\alpha_{1}}\left(1-\alpha_{1}\right)^{-\left(1-\alpha_{1}\right)} w_{L}^{\alpha_{1}} w_{K}^{1-\alpha_{1}} q_{1} . \tag{4}
\end{equation*}
$$

And by analogy:

$$
\begin{gather*}
z_{L 2}=\alpha_{2} \frac{C_{2}\left(w_{L}, w_{K}\right)}{w_{L}}, \tag{5}\\
z_{K 2}=\left(1-\alpha_{2}\right) \frac{C_{2}\left(w_{L}, w_{K}\right)}{w_{K}}, \tag{6}
\end{gather*}
$$

where

$$
\begin{equation*}
C_{2}\left(w_{L}, w_{K}, q_{2}\right)=\alpha_{2}^{-\alpha_{2}}\left(1-\alpha_{2}\right)^{-\left(1-\alpha_{2}\right)} w_{L}^{\alpha_{2}} w_{K}^{1-\alpha_{2}} q_{2} \tag{7}
\end{equation*}
$$

Step 2: Profit maximization.

Firms maximize profits:

$$
\begin{equation*}
\pi_{j}=p_{j} q_{j}-C_{j}\left(w_{L}, w_{K}, q_{j}\right) \tag{8}
\end{equation*}
$$

First order condition for all j :

$$
\begin{equation*}
p_{j}=c_{j}\left(w_{L}, w_{K}\right) \tag{9}
\end{equation*}
$$

Where $c_{j}\left(w_{L}, w_{K}\right)=\frac{\partial C_{j}\left(w_{L}, w_{K}, q_{j}\right)}{\partial q_{j}}$ is the marginal cost $=$ average cost $=$ unit cost (CRS) which in this case is independent of q_{j}.
So we have:

$$
\begin{aligned}
& p_{1}=\alpha_{1}^{-\alpha_{1}}\left(1-\alpha_{1}\right)^{-\left(1-\alpha_{1}\right)} w_{L}^{\alpha_{1}} w_{K}^{1-\alpha_{1}} \\
& p_{2}=\alpha_{2}^{-\alpha_{2}}\left(1-\alpha_{2}\right)^{-\left(1-\alpha_{2}\right)} w_{L}^{\alpha_{2}} w_{K}^{1-\alpha_{2}}
\end{aligned}
$$

or:

$$
p_{1}=A_{1} w_{L}^{\alpha_{1}} w_{K}^{1-\alpha_{1}}
$$

$$
p_{2}=A_{2} w_{L}^{\alpha_{2}} w_{K}^{1-\alpha_{2}}
$$

Therefore we can solve the above system of equations:

$$
w_{K}=p_{2}^{\frac{1}{1-\alpha_{2}}} A_{2}^{\frac{-1}{1-\alpha_{2}}} w_{L}^{\frac{-\alpha_{2}}{1-\alpha_{2}}}
$$

and:

$$
\begin{gathered}
p_{1}=A_{1} w_{L}^{\alpha_{1}} p_{2}^{\frac{1-\alpha_{1}}{1-\alpha_{2}}} A_{2}^{\frac{\alpha_{1}-1}{1-\alpha_{2}}} w_{L}^{\frac{-\alpha_{2\left(1-\alpha_{1}\right)}^{1-\alpha_{2}}}{}} \\
p_{1}=A_{1} w_{L}^{\alpha_{1}} p_{2}^{\frac{1-\alpha_{1}}{1-\alpha_{2}}} A_{2}^{\frac{\alpha_{1}-1}{1-\alpha_{2}}} w_{L}^{\frac{\alpha_{1}\left(1-\alpha_{2}\right)-\alpha_{2}\left(1-\alpha_{1}\right)}{1-\alpha_{2}}} \\
p_{1} p_{2}^{-\frac{1-\alpha_{1}}{1-\alpha_{2}}} A_{1}^{-1} A_{2}^{\frac{1-\alpha_{1}}{1-\alpha_{2}}}=w_{L}^{\frac{\alpha_{1}-\alpha_{2}}{1-\alpha_{2}}} \\
p_{1}^{\frac{1-\alpha_{2}}{\alpha_{1}-\alpha_{2}}} p_{2}^{-\frac{1-\alpha_{1}}{\alpha_{1}-\alpha_{2}}} A_{1}^{-\frac{1-\alpha_{2}}{\alpha_{1}-\alpha_{2}}} A_{2}^{\frac{1-\alpha_{1}}{\alpha_{1}-\alpha_{2}}}=w_{L} \\
p_{1}^{\frac{1-\alpha_{2}}{\alpha_{1}-\alpha_{2}}} p_{2}^{-\frac{1-\alpha_{1}}{\alpha_{1}-\alpha_{2}}} A_{1}^{-\frac{1-\alpha_{2}}{\alpha_{1}-\alpha_{2}}} A_{2}^{\frac{1-\alpha_{1}}{\alpha_{1}-\alpha_{2}}}=w_{L} \\
w_{L}=p_{1}^{\frac{1-\alpha_{2}}{\alpha_{1}-\alpha_{2}}} p_{2}^{-\frac{1-\alpha_{1}}{\alpha_{1}-\alpha_{2}}} A_{1}^{-\frac{1-\alpha_{2}}{\alpha_{1}-\alpha_{2}}} A_{2}^{\frac{1-\alpha_{1}}{\alpha_{1}-\alpha_{2}}} \\
w_{K}=p_{2}^{\frac{1}{1-\alpha_{2}}} A_{2}^{\frac{-1}{1-\alpha_{2}}}\left(p_{1}^{\frac{1-\alpha_{2}}{\alpha_{1}-\alpha_{2}}} p_{2}^{-\frac{1-\alpha_{1}}{\alpha_{1}-\alpha_{2}}} A_{1}^{-\frac{1-\alpha_{2}}{\alpha_{1}-\alpha_{2}}} A_{2}^{\frac{1-\alpha_{1}}{\alpha_{1}-\alpha_{2}}}\right) \frac{-\alpha_{2}}{1-\alpha_{2}}
\end{gathered}
$$

To make things even simpler, we can introduce two new constants, $A_{L}=A_{1}^{-\frac{1-\alpha_{2}}{\alpha_{1}-\alpha_{2}}} A_{2}^{\frac{1-\alpha_{1}}{\alpha_{1}-\alpha_{2}}}$ and $A_{K}=A_{1}^{\frac{\alpha_{2}}{\alpha_{1}-\alpha_{2}}} A_{2}^{\frac{-\alpha_{1}}{\alpha_{1}-\alpha_{2}}}$:

$$
\begin{aligned}
& w_{L}=p_{1}^{\frac{1-\alpha_{2}}{\alpha_{1}-\alpha_{2}}} p_{2}^{-\frac{1-\alpha_{1}}{\alpha_{1}-\alpha_{2}}} A_{L} \\
& w_{K}=p_{1}^{\frac{-\alpha_{2}}{\alpha_{1}-\alpha_{2}}} p_{2}^{\frac{\alpha_{1}}{\alpha_{1}-\alpha_{2}}} A_{K}
\end{aligned}
$$

So if the prices are known, we know exactly what the wages will be.
Note that an increase in p_{1} causes an increase in w_{L} and a decrease in w_{K} if $\alpha_{1}>\alpha_{2}$. (Stolper Samuelson).

Step 3: Factor demands

Note that with constant returns to scale:

$$
C_{j}\left(w_{L}, w_{K}, q_{j}\right)=c_{j}\left(w_{L}, w_{K}\right) q_{j}
$$

where c_{j} is marginal cost of production equal to: $c_{j}\left(w_{L}, w_{K}\right)=A_{j} w_{L}^{\alpha_{1}} w_{K}^{1-\alpha_{1}}$.
Therefore, our factor demands can be expressed as:

$$
z_{L j}=\alpha_{i} \frac{c_{j}\left(w_{L}, w_{K}\right)}{w_{L}} q_{j}
$$

$$
z_{K j}=\left(1-\alpha_{i}\right) \frac{c_{j}\left(w_{L}, w_{K}\right)}{w_{K}} q_{j}
$$

we can also call the $a_{L j}=a_{L j}\left(w_{L}, w_{K}\right)=\alpha_{j} \frac{c_{j}\left(w_{L}, w_{K}\right)}{w_{L}}$ and $a_{K j}=a_{K j}\left(w_{L}, w_{K}\right)=\left(1-\alpha_{j}\right) \frac{c_{j}\left(w_{L}, w_{K}\right)}{w_{L}}$, the unit factor requirement, so that:

$$
z_{i j}=a_{i j} q_{j}
$$

Note that: $a_{i j}$ is constant:

- as long as wages are constant
- wages are constant as long as prices are constant.

Note also that for any w_{L} and $w_{K}, z_{L 1}>z_{L 2}$.

Step 4: Resource constraint

(the factor use in both sectors have to be equal to respective endowments):

$$
\begin{aligned}
& z_{L 1}\left(w_{L}, w_{K}, q_{1}\right)+z_{L 2}\left(w_{L}, w_{K}, q_{2}\right)=\omega_{L} \\
& z_{K 1}\left(w_{L}, w_{K}, q_{1}\right)+z_{K 2}\left(w_{L}, w_{K}, q_{2}\right)=\omega_{K}
\end{aligned}
$$

Making use of the $a_{i j}$ (remember that we know it ex-ante with exogeneous prices p_{1} and p_{2}).

$$
\begin{aligned}
& q_{1} a_{L 1}+q_{2} a_{L 2}=\omega_{L} \\
& q_{1} a_{K 1}+q_{2} a_{K 2}=\omega_{K}
\end{aligned}
$$

This is a system of two linear equations with unknowns q_{1} and q_{2}. Solution to the system gives us output levels. Let us see:

$$
\begin{gathered}
q_{2} a_{K 2}=\omega_{K}-q_{1} a_{K 1} \\
q_{2}=\frac{\omega_{K}-q_{1} a_{K 1}}{a_{K 2}} \\
q_{1} a_{L 1}+\frac{\omega_{K}-q_{1} a_{K 1}}{a_{K 2}} a_{L 2}=\omega_{L} \\
q_{1}\left(a_{L 1}-\frac{a_{K 1} a_{L 2}}{a_{K 2}}\right)=\omega_{L}-\frac{\omega_{K} a_{L 2}}{a_{K 2}} \\
q_{1}\left(\frac{a_{L 1} a_{K 2}-a_{K 1} a_{L 2}}{a_{K 2}}\right)=\omega_{L}-\frac{\omega_{K} a_{L 2}}{a_{K 2}} \\
q_{2}=\frac{1}{a_{L 1} a_{K 2}-a_{K 1} a_{L 2}}\left(a_{K 2} \omega_{L}-a_{L 2} \omega_{K}\right) \\
a_{K 2} \\
-\frac{a_{K 1}}{a_{K 2}} \frac{1}{a_{L 1} a_{K 2}-a_{K 1} a_{L 2}}\left(a_{K 2} \omega_{L}-\omega_{K} a_{L 2}\right) \\
q_{2}=\frac{\omega_{K} a_{L 1} a_{K 2}-a_{K 1} a_{K 2} \omega_{L}}{a_{K 2}\left(a_{L 1} a_{K 2}-a_{K 1} a_{L 2}\right)}
\end{gathered}
$$

$$
\begin{aligned}
& q_{1}=\frac{1}{a_{L 1} a_{K 2}-a_{K 1} a_{L 2}}\left(a_{K 2} \omega_{L}-a_{L 2} \omega_{K}\right) \\
& q_{2}=\frac{1}{a_{L 1} a_{K 2}-a_{K 1} a_{L 2}}\left(a_{L 1} \omega_{K}-a_{K 1} \omega_{L}\right)
\end{aligned}
$$

Since due to our assumptions: $a_{L 1} a_{K 2}>a_{K 1} a_{L 2}$, an increase in ω_{L} will result in an increse in q_{1} and a decrease in q_{2}. An increase in ω_{K} will result in an increse in q_{2} and a decrease in q_{1}. (Rybczynski)

Step 5: Get the factor demands.

Substitute $a_{i j}^{\prime} s$ and $q_{j}^{\prime} s$ into the factor demands and obtain the factor demand $z_{i j}^{\prime} s$.

