More flexible utility and production function. Constant elasticity
of substitution

Jan Hagemejer

CES utility function

In the two good case:

In the N—good case:

Deriving Marshalian demand

Consumer maximizes utility subject to the budget constraint:
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The Lagrange function:

The first order conditions:
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Simplify the first FOC:

Divide one by another:
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Now plug it in the (slightly rewritten) budget constraint
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Deriving Hicksian demand

We will work with nested functions, so Hicksian demand would be more suitable. The consumer problem
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The first order conditions:
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Rearanging the first condition:
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Take the same for jth good:
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Take the ratio of the two:
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Plug it now into the utility function (second constraint
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Now the hell of different powers:
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Define P - a unit CES expenditure function (a CES price index)
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then:
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is the demand for good i given the level of uitility and the price index of consumption
Verify the expenditure function:
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So the price index P is the unit expenditure function (for U = 1)



Calibration (this is a little nasty with CES)

e set o to your external estimate (get it using econometric methods or obtain for literature or guess)
e what about other parameters:
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where S; = B2 is the share in expenditure. Therefore:
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Summing up, to calibrate:
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CES production function

By analogy with the Hicksian demand we can state the CES production function:
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where A, b; and ~ are parameters, () is the output level of the produced good and v; is the amount of the
t — th input.
The demand for inputs is then:
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where w; is the wage of the i-th input and p is the price of the final output (since price equals marginal cost).
The marginal (unit) cost of production has to equal the price of output:
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Calibration

e set vy to your external estimate (get it using econometric methods or obtain for literature or guess)
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e With w; = 1 or PFAC=1 in the initial equilibrium, we can write the parameter value as:

B(FAC)=
(USEO(FAC,SEC) ** (1 / GAMMA(SEC))
/ SUM(FACC, USEO(FACC,SEC)** (1 / GAMMA(SEC)) ))**GAMMA(SEC) ;
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e A=Q/(X K b7v,” )71, which in your code will look like:

ACES(SEC) = XDO(SEC)
/ (SUM(FAC,
B(FAC,SEC)**(1 / GAMMA(SEC)) * USEO(FAC,SEC)**((GAMMA(SEC)-1) / GAMMA(SEC)))



