Optimization without constraints

Reference: The examples are taken from William Novshek, Mathematics for Economists, Academic Press, 1993

Another good reference: Carl P. Simon, Lawrence Blume, Mathematics for Economists, 1994

We will be looking for a local maximum of a function \(f : \mathbb{R} \to \mathbb{R} \). This means that we will be looking for an \(a \) such that \(f(x) \leq f(a) \) for any \(x \) arbitrarily close to \(a \).

When we have just one variable in the vector \(x \), the rule is easy:

Theorem 1. If \(f : \mathbb{R} \to \mathbb{R} \) and all its first partial derivatives are continuously differentiable on a set which contains \(a \) in its interior, then:

1. (Necessary conditions) \(f \) has a local maximum (minimum) at \(a \) only if the derivative \(\partial f(a)/\partial x = 0 \) and if the second derivative is \(\partial^2 f(a)/\partial x^2 \) non-positive (non-negative).

2. (Sufficient conditions) \(f \) has a local maximum (minimum) at \(a \) only if the derivative \(\partial f(a)/\partial x = 0 \) and if the second derivative is \(\partial^2 f(a)/\partial x^2 \) negative (positive).

If we have more variables, the problem is more complex.

Theorem 2. If \(f : \mathbb{R}^n \to \mathbb{R} \) and all its first partial derivatives are continuously differentiable on a set which contains \(a \) in its interior, then:

1. (Necessary conditions) \(f \) has a local maximum (minimum) at \(a \) only if the gradient matrix \(\nabla f(a) = 0 \) and if the matrix of second derivatives \(\begin{bmatrix} f_{ij}(a) \end{bmatrix}_{n \times n} \) is negative (positive) semidefinite.

2. (Sufficient conditions) \(f \) has a local maximum (minimum) at \(a \) only if the gradient matrix \(\nabla f(a) = 0 \) and if the matrix of second derivatives \(\begin{bmatrix} f_{ij}(a) \end{bmatrix}_{n \times n} \) is negative (positive) definite.

How to check for positive definiteness? In short:

1. A matrix is PD (ND) if all its eigenvalues are positive (negative)
2. A matrix is PSD (NSD) if all its eigenvalues are greater or equal to zero (less or equal to zero).

Definition 3. Eigenvalue of matrix \(A \) (symmetric) is a number \(r \) which when subtracted from each of the diagonal entries of \(A \) converts \(A \) into a singular matrix. Therefore \(r \) is an eigenvalue of \(A \) if and only if \(A - rI \) is a singular matrix.

Nice property is that to find the \(r \) we can find the roots of the characteristic polynomial:

\[
\det(A - rI) = 0
\]

and solve for \(r \). Finding eigenvalues can be a pain if out matrices are large and/or complicated.

However, to check for PD (ND) we can also use the following rule, that turns out to be easier in many circumstances, using the so-called principal minors of matrix.

Definition 4. Let \(A \) be an \(n \times n \) matrix. A \(k \times k \) submatrix of \(A \) formed by deleting \(n-k \) columns, say columns \(i_1, i_2, \ldots, i_{n-k} \) and the same \(n-k \) rows, rows \(i_1, i_2, \ldots, i_{n-k} \) from \(A \) is called a \(k \)th order principal submatrix of \(A \). The determinant of a \(k \times k \) principal submatrix is called a \(k \)th order principal minor of \(A \).

The \(k \)th order leading principal matrix \(A \) is obtained by deleting last \(n-k \) rows and last \(n-k \) columns from out matrix \(A \).

And now:

Theorem 5. Let \(A \) be and \(n \times n \) symmetric matrix. Then,

1. \(A \) is positive definite if and only if all its \(n \) leading principal minors are positive.

2. \(A \) is negative definite if and only if its \(n \) leading principal minors alternate in sign as follows: \(|A_1| < 0, |A_2| > 0, |A_3| < |A_4|, \ldots \) ie. the \(k \)th order leading principal minor should have the same sign as \((-1)^k\).

Example: \(f(x, y) = -3x^2 + xy - 2x + y - y^2 + 1 \)

Solution:

The FOCs:

\[
\frac{\partial f(x, y)}{\partial x} = -6x + y - 2 = 0
\]

\[
\frac{\partial f(x, y)}{\partial y} = x + 1 - 2y = 0
\]

The solution to the above system of equations:

\[
6(1 - 2y) + y - 2 = 0
\]

\[
4 - 11y = 0
\]

\[
y = 4/11
\]

and from the first equation:

\[
x = 8/11 - 1 = -3/11
\]

We need to check the second order conditions. The Hessian matrix:

\[
H = \begin{bmatrix}
\frac{\partial^2 f(x, y)}{\partial x^2} & \frac{\partial^2 f(x, y)}{\partial x \partial y} \\
\frac{\partial^2 f(x, y)}{\partial y \partial x} & \frac{\partial^2 f(x, y)}{\partial y^2}
\end{bmatrix} = \begin{bmatrix}
-6 & 1 \\
1 & -2
\end{bmatrix}
\]

The first order leading principal matrix \(H_{11} = -6 < 0 \). The determinant of the second order leading principal matrix:

\[
\begin{vmatrix}
-6 & 1 \\
1 & -2
\end{vmatrix} = 11 > 0
\]

Therefore the matrix \(H \) is negative definite and our solution is indeed a maximum.
Constrained Optimization

The problem: maximize $f(x)$ subject to equality constraints (note that x is a vector):

- to m inequality constraints $g^i(x) \leq b^i$ (note the exact form of the inequalities)
- to k equality constraints $h^j(x) = c^j$

The solution: form the Lagrange function:

$$L(x, \lambda) = f(x) + \sum_{i=1}^{m} \lambda_i (b^i - g^i(x)) + \sum_{j=1}^{k} \lambda_{m+j} (c^j - h^j(x))$$

And take first derivatives with respect to all xs and λs. The conditions for the local maximum are:

$$\nabla f(x) - \sum_{i=1}^{m} \lambda_i \nabla g^i(x) - \sum_{j=1}^{k} \lambda_{m+j} \nabla h^j(x) = 0$$

$$\lambda_i \geq 0 \text{ for } i = 1, \ldots, m$$

$$\lambda_i (b^i - g^i(x)) = 0 \text{ for } i = 1, \ldots, m$$

Note that the last two conditions guarantee that either $\lambda_i = 0$ and therefore constraint i is not binding (this only applies to inequality conditions) or $\lambda_i > 0$ and in that case $b^i - g^i(x) = 0$ condition i becomes an equality condition.

Example: maximize $f(x, y) = y - x^2$ subject to: $y \leq 2x - 1$, $y \geq 0$ and $x \geq 0$.

Solution: Our Lagrangian for this particular problem is:

$$L(x, y, \lambda_1, \lambda_2, \lambda_3) = y - x^2 + \lambda_1 (-1 + 2x - y) + \lambda_2 x + \lambda_3 y$$

The first order conditions are:

$$\frac{\partial L}{\partial x} = -2x + 2\lambda_1 - \lambda_2 = 0$$

$$\frac{\partial L}{\partial y} = 1 - \lambda_1 + \lambda_3 = 0$$

$$\frac{\partial L}{\partial \lambda_1} = -1 + 2x - y = 0$$

$$\frac{\partial L}{\partial \lambda_2} = x \geq 0$$

$$\frac{\partial L}{\partial \lambda_3} = y \geq 0$$

Note: Either λ_i is equal to zero OR the ith condition is binding. If λ_i is greater than zero then the ith condition IS binding.

Take the second condition. It implies that: $1 - \lambda_1 + \lambda_3 = 0$. If $\lambda_3 \geq 0$ then $\lambda_1 > 0$. Therefore we know for sure that the first inequality constraint is condition is binding: $(-1 + 2x - y) = 0$.

Therefore $\lambda_1 > 0$. What about the remaining λs? Let us consider cases:

Case 1: $\lambda_1 > 0$, $\lambda_2 > 0$, $\lambda_3 > 0$:

In that case, $x = 0$, $y = 0$, and $-1 + 2x - y = 0$. This can’t be true. A contradiction. Case ruled out.

Case 2: $\lambda_1 > 0$, $\lambda_2 = 0$, $\lambda_3 > 0$:

In that case, $x > 0$, $y = 0$, and $-1 + 2x - y = 0$. Therefore $-2x + 2\lambda_1 = 0$, and $x = \lambda_1 = \frac{1}{2}$. In that case: $1 - \lambda_1 + \lambda_3 = 0$ implies that $\lambda_3 = -\frac{1}{2}$. Contradiction, case ruled out.

Case 3: $\lambda_1 > 0$, $\lambda_2 > 0$, $\lambda_3 = 0$:

In that case, $x = 0$, $y > 0$, and $-1 + 2x - y = 0$. Therefore $y = -1$. Contradiction. Case ruled out.

Case 4: $\lambda_1 > 0$, $\lambda_2 > 0$, $\lambda_3 = 0$:

In that case, $x > 0$, $y > 0$, and $-1 + 2x - y = 0$, $-2x + 2\lambda_1 = 0$, $1 - \lambda_1 = 0$. Therefore $\lambda_1 = x = y = 1$. $\lambda_2 = \lambda_3 = 0$. So $(x, y, \lambda_1, \lambda_2, \lambda_3) = (1, 1, 1, 0, 0)$ is the only solution.

Sufficient second order conditions

Consider a matrix L_{ij} of second partial derivatives of L. We only consider s constraints that were binding ($\lambda_i > 0$) in our FOC. Consider a matrix D_i to be the $(2s + i) \times (2s + i)$ lower right-hand corner submatrix of L_{ij}:

- The sufficient condition for x^0 to be a strict local minimizer of f subject to the constraints is $(-1)^r |D_r| > 0$ for $r = 1, 2, ..., n - s$ (remember - n is the number of variables in x and s is the number of binding constraints). For example if there are three variables and one constraint, we have to check for $r = 1$ and $r = 2$.

2
• The sufficient condition for x^0 to be a local minimizer of f subject to the constraints is $(-1)^s |D_r| \geq 0$ for $r = 1, 2, ..., n - s$. For example if there are three variables and one constraint, we have to check for $r = 1$ and $r = 2$.

• The sufficient condition for x^0 to be a strict local maximizer of f subject to the constraints is $(-1)^{r+s} |D_r| > 0$ for $r = 1, 2, ..., n - s$ (remember - n is the number of variables in x and s is the number of binding constraints). For example if there are three variables and one constraint, we have to check for $r = 1$ and $r = 2$.

• The sufficient condition for x^0 to be a local maximizer of f subject to the constraints is $(-1)^{r+s} |D_r| \geq 0$ for $r = 1, 2, ..., n - s$. For example if there are three variables and one constraint, we have to check for $r = 1$ and $r = 2$.

Example: minimize $x^2 + y^2$, subject to $x + y - 2 = 0$.

$$\min(x^2 + y^2)$$

subject to $x + y - 3 = 0$.

$$L = x^2 + y^2 + \lambda(2 - x - y) = 0$$

FOC:

$$2x - \lambda = 0$$

$$2y - \lambda = 0$$

$$-x - y - 2 = 0$$

We see that

$$x = y = 1, \lambda = 2$$

$$L_{ij} = \begin{pmatrix} 2 & 0 & -1 \\ 0 & 2 & -1 \\ -1 & -1 & 0 \end{pmatrix}$$

And the only determinant to check is $D_1 (3x3 \text{ matrix})$ which is:

$0 + 0 - 2 - 2 - 0 = -4$ and therefore the the only required condition for minimum is satisfied $((-1)^1(-4) > 0$ and the vector $(1, 1)$ is a strict local minimizer).