Homework 2

Let me know if you spot errors in the homework. Good luck.

1. Consider the production function $q=f\left(z_{1}, z_{2}\right)=z_{1}^{2}+z_{2}$. What can you say about returns to scale in this case?
2. Consider the production function $q=f\left(z_{1}, z_{2}\right)=z_{1}+z_{2}$.
(a) draw some isoquants of this production function.
(b) derive conditional factor demands (watch out for corner solutions).
(c) derive the cost function $C\left(q, w_{1}, w_{2}\right)$.
(d) draw the cost function for $w_{1}=w_{2}=1$ (on the horizontal axis put q and $C(q, 1,1)$ on the vertical axis).
3. Consider a production function $q=f\left(z_{1}, z_{2}\right)=z_{1}^{0.3} z_{2}^{0.2}$.
(a) find the optimum level of inputs that maximize profits at wages $\left(w_{1}, w_{2}\right)=(15,10)$ and price of the final output $p=150$.
(b) find the level of output with the input choices found in part (a).
(c) what are the profits at that output level?.
4. Given the production function (one output)

$$
q=f\left(z_{1}, \ldots, z_{L}\right)=\prod_{l=1}^{L} z_{l}^{\alpha_{l}}
$$

with $\sum_{l=1}^{L} \alpha_{l}=1$, where L is the number of inputs.
(a) What can you say about returns to scale?
(b) Derive the conditional factor demands $z_{l}(q, w)$
(c) Derive the cost function $C(q, w)$ and draw it for $w_{1}=w_{2}=1$.
(d) Derive average and marginal cost functions.
(e) With such a function, can you determine the profit maximizing level of output? Why?
5. For the Leontief production function (one output) $q=f(z)=\min \left\{z_{1} / a_{1}, \ldots, z_{l} / a_{l}, \ldots, z_{L} / a_{L}\right\}$ where $a_{l}>0, \forall_{l \in L}$, and L is the number of inputs:
(a) draw a few isoquants for $L=2$. Graphically determine the optimal combination of inputs z_{1} and z_{2}.
(b) for $L=2$ derive the conditional factor demands and the cost function.
(c) what can you say about returns to scale?
(d) generalize your result in (b) for general $L>2$. Hint: refer to the similar question in the first homework.
6. For the CES production function:

$$
q=f\left(z_{1}, z_{2}\right)=\left(z_{1}^{\rho}+z_{2}^{\rho}\right)^{1 / \rho} .
$$

(a) Find conditional factor demands and the cost function.
(b) Find the elasticity of substitution (use the approximation in logs).
7. Suppose the two-input production function has corresponding cost function:

$$
C\left(q, w_{1}, w_{2}\right)=\left(5 w_{1}+2 w_{2}\right) q^{2}
$$

(a) find conditional factor demands (use Shephard's lemma)
(b) draw the cost function for $w_{1}=w_{2}=1$.
(c) is the production function homothetic ${ }^{1}$?
(d) find the profit function $\pi(p, w)$ (you need to do the profit maximization problem using the cost function).

[^0]8. Suppose the two-input production function has corresponding cost function:
$$
C\left(q, w_{1}, w_{2}\right)=2 q^{2} \sqrt{w_{1} w_{2}}
$$
(a) find conditional factor demands.
(b) draw the total cost function for $w_{1}=w_{2}=1$.
(c) draw the marginal and average cost curves for $w_{1}=w_{2}=1$.
(d) is the production function homothetic?
(e) find the profit function $\pi(p, w)$.
(f) find the profit maximizing level of output q when $w_{1}=w_{2}=1$ and the price of the final good is $p=8$. Depict your findings on the graph you have drawn in c). What is the level of profits at that level of output?
9. Suppose the two-input production function has corresponding cost function:
$$
C\left(q, w_{1}, w_{2}\right)=2 q w_{1}^{0.25} w_{2}^{0.75}
$$
(a) find conditional factor demands
(b) is the production function homothetic?
(c) find the profit function $\pi(p, w)$.
(d) find the profit maximizing level of output q when $w_{1}=w_{2}=1$ for any level of $p>0$ (think first about returns to scale).
10. Suppose the two-input production function has corresponding cost function:
$$
C\left(q, w_{1}, w_{2}\right)=q^{0.5} w_{1}^{0.4} w_{2}^{0.6}
$$
(a) find conditional factor demands
(b) what are the returns to scale (increasing/decreasing)?
(c) what is the profit maximizing output at prices p and w ?
(d) draw the marginal and average cost functions for $w_{1}=w_{2}=1$, compare it to price any price p and comment on your finding in (c).
11. A firm has a profit function of the form:
$$
\pi\left(p, w_{1}, w_{2}\right)=p^{2} /\left(8 \sqrt{w_{1} w_{2}}\right)
$$
(a) Derive the firm's supply function.
(b) Derive the firm's factor demands.
(c) Derive the firm's cost function $C(q, w)$ (Hint: use the fact that: Profit $=p q-c o s t$ and the firm supply function to get a function of q and w and not p).
12. A firm has a production set $Y \in \mathbb{R}_{+}^{4}$ such that $\left(z_{1}, z_{2}, q_{1}, q_{2}\right) \in \mathbb{R}_{+}^{4}$ is feasible if and only if $q_{1}^{2}+q_{2}^{2} \leq z_{1} z_{2}$ (q 's are the 2 outputs and z 's are the 2 inputs, so on the transformation frontier $q_{1}^{2}+q_{2}^{2}=z_{1} z_{2}$):
(a) Draw the transformation curve between q_{1} and q_{2} when $z_{1}=2, z_{2}=18$ - note that you have to treat z_{1} and z_{2} as fixed so that the relationship will be purely between q_{1} and q_{2} and the graph obviously should be in \mathbb{R}^{2}.
(b) Is the technology consistent with non-increasing returns to scale? Explain.
(c) What would be profit maximizing outputs q_{1}, q_{2} if $p_{1}=p_{2}=4, w_{1}=w_{2}=1, z_{1}=2, z_{2}=18$. Illustrate your answer on the diagram you have drawn in (a).

[^0]: ${ }^{1}$ for a function to be homothethic, ratios of optimal factor (input) choices have to be constant with constant wages and varying output

