WHEN DO RESPONDENTS STATE THEIR PREFERENCES TRUTHFULLY?

Ewa Zawojska

University of Warsaw, Department of Economics
ezawojska@wne.uw.edu.pl
Stated preference methods

• Used to determine public’s preferences, especially towards non-market goods
• Survey-based – in specially designed surveys respondents state what they would do
• Important for cost-benefit analysis – allow to estimate the benefits
• Flexible – enable valuation of hypothetical states
• BUT much scepticism whether survey responses reflect actual preferences
Stated preference methods

- Used to determine public’s preferences, especially towards non-market goods
- Survey-based – in specially designed surveys respondents state what they would do
- Important for cost-benefit analysis – allow to estimate the benefits
- Flexible – enable valuation of hypothetical states
- BUT much scepticism whether survey responses reflect actual preferences

When do people answer truthfully in stated preference surveys?
Conditions for incentive compatibility

Incentive compatibility = Revealing true preferences is the respondent’s optimal strategy.

1. Respondents understand and answer the question being asked.
2. The survey is seen as a take-it-or-leave-it offer.
3. The survey involves a yes-no answer on a single project. (the Gibbard-Satterthwaite theorem)
4. The authority can enforce the payment (coercive payment).
5. The survey is perceived as consequential:
 - Respondents care about the good being valued.
 - Respondents believe that their responses affect the finally introduced policy.
Should we care about the conditions for incentive compatibility?

- Are they important in practice?
- The vast majority of field stated preference surveys do not satisfy the conditions.
- The conditions place important limitations on the survey design.
- Trade-off between incentive compatibility and statistical efficiency.

- BUT our literature review of validity tests of the stated preference methods (Zawojska and Czajkowski, 2015) suggests that:
 - when the conditions are fulfilled, no divergence between stated preferences and true preferences is observed;
 - when they are not fulfilled, many studies report divergence.
Conditions for incentive compatibility

Incentive compatibility = Revealing true preferences is the respondent’s optimal strategy.

1. Respondents understand and answer the question being asked.
2. The survey is seen as a take-it-or-leave-it offer.
3. The survey involves a yes-no answer on a single project. (the Gibbard-Satterthwaite theorem)
4. The authority can enforce the payment (coercive payment).
5. The survey is perceived as consequential:
 - Respondents care about the good being valued.
 - Respondents believe that their responses affect the finally introduced policy.
Impact of consequentiality on stated preferences

Mixed empirical evidence

- Czajkowski et al. (2015), Groothuis et al. (2015), Herriges et al. (2010), Li et al. (2015), Vossler and Watson (2013)
- Broadbent (2012), Broadbent et al. (2010), Drichoutis et al. (2015)
- Cummings and Taylor (1998), Vossler et al. (2012)
A (too?) general concept of consequentiality

- Individuals’ perceptions over consequentiality are usually assessed on the basis of such questions as this one:

 How likely do you think it is that the results of this survey will affect final policy decisions?

- But... is it not a too general question?
A (too?) general concept of consequentiality

- Stated preference questions have two important components, which may be related to two components of consequentiality.

 Would you pay 5 Euro every year, through a tax surcharge, to improve the landscape around Taj Mahal?

 - Monetary policy attribute
 - Self-perceived probability of payment collection
 - Payment consequentiality

 - Non-monetary policy attribute
 - Self-perceived probability of policy provision
 - Policy provision consequentiality

- Another component of consequentiality: a respondent’s view of the potential impact of his response on the survey outcome (own vote’s consequentiality).
A (too?) general concept of consequentiality

- Stated preference questions have two important components, which may be related to two components of consequentiality.

Would you pay 5 Euro every year, through a tax surcharge, to improve the landscape around Taj Mahal?

- Monetary policy attribute
- Self-perceived probability of payment collection
- Payment consequentiality

- Non-monetary policy attribute
- Self-perceived probability of policy provision
- Policy provision consequentiality

- Another component of consequentiality: a respondent’s view of the potential impact of his response on the survey outcome (own vote’s consequentiality).

Brent et al. (2014), Champ et al. (2002), Flores and Strong (2007), Mitani and Flores (2014)
As a consequence...

- How can we control for survey consequentiality if we do not know how to measure it?
- Perceptions over separate consequentiality components could / should be assessed.

What we do

- Model how subjective perceptions of consequentiality affect incentive properties of stated preference surveys.
- Different components of consequentiality incorporated together in a single model.
- A coercive payment mechanism – an advisory referendum.
- Endogeneity of consequentiality perceptions – respondents who attach a high value to a project may (be willing to) believe in high consequentiality of the survey because of the importance of the project to them (Herriges et al. 2010, Hwang et al. 2014).
Modelling framework

- A stated preference survey
- A single-shot referendum: Would you pay cost c, through a tax surcharge, to have a public good X provided?
- v_i – the value individual i obtains when the good is provided
- An advisory referendum: the more votes for the project, the more likely it is implemented

The probability of the project implementation: $q_i\left(\frac{1}{N} \sum_{k=1}^{N} y_k\right)$

where: y_k is the individual k’s vote ($y_k = 1$ when “yes”, $y_k = 0$ when “no”),
N is the number of voters,
$q_i(.)$ is a (weakly) increasing function how votes translate into the probability

$q_i\left(\frac{1}{N} \sum_{k=1}^{N} y_k\right) = q_i\left(\frac{I_{-i}^E + y_k}{N}\right)$, where I_{-i}^E is the expected (by individual i) number of votes for the project excluding the i’s vote
Expected utility from voting behaviour

Expected utility from voting “yes”, $y_i = 1$: $EU_{YES,i} = q_i \left(\frac{I^E_i}{N} + 1 \right) EU_{L,i} + \left[1 - q_i \left(\frac{I^E_i}{N} + 1 \right) \right] EU_{NL,i}$

Expected utility from voting “no”, $y_i = 0$: $EU_{NO,i} = q_i \left(\frac{I^E_i}{N} \right) EU_{L,i} + \left[1 - q_i \left(\frac{I^E_i}{N} \right) \right] EU_{NL,i}$

Expected utility when the project is implemented
Expected utility when the project is not implemented
Expected utility from voting behaviour

Expected utility from voting “yes”, \(y_i = 1 \):
\[
EU_{YES,i} = q_i \left(\frac{I_{-i}^E + 1}{N} \right) EU_{I,i} + \left[1 - q_i \left(\frac{I_{-i}^E + 1}{N} \right) \right] EU_{NL,i}
\]

Expected utility from voting “no”, \(y_i = 0 \):
\[
EU_{NO,i} = q_i \left(\frac{I_{-i}}{N} \right) EU_{I,i} + \left[1 - q_i \left(\frac{I_{-i}}{N} \right) \right] EU_{NL,i}
\]
Incentive compatible survey

\[EU_{YES,i} - EU_{NO,i} = q_i \left(\frac{I_{YES,i} + 1}{N} \right) - q_i \left(\frac{I_{NO,i}}{N} \right) \left(EU_{I,i} - EU_{NI,i} \right) \]

Incentive compatibility holds iff

\[\begin{align*}
EU_{YES,i} &> EU_{NO,i} \quad \text{for } v_i > c \\
EU_{YES,i} &= EU_{NO,i} \quad \text{for } v_i = c \\
EU_{YES,i} &< EU_{NO,i} \quad \text{for } v_i < c
\end{align*} \]

1) When \(q_i \left(\frac{I_{YES,i} + 1}{N} \right) - q_i \left(\frac{I_{NO,i}}{N} \right) \approx 0 \), the respondent is indifferent between voting “yes” and “no” regardless of his project valuation – lack of incentive compatibility.

2) When \(q_i \left(\frac{I_{YES,i} + 1}{N} \right) - q_i \left(\frac{I_{NO,i}}{N} \right) > 0 \), the incentive compatibility properties of the survey depend on \(EU_{I,i} - EU_{NI,i} \).
Incentive compatible survey

\[EU_{YES,i} - EU_{NO,i} = \left[q_i \left(\frac{I_i^E + 1}{N} \right) - q_i \left(\frac{I_i^E}{N} \right) \right] (EU_{I,i} - EU_{NI,i}) \]

Incentive compatibility holds iff

\[\begin{align*}
EU_{YES,i} &> EU_{NO,i} \quad \text{for } v_i > c \\
EU_{YES,i} &= EU_{NO,i} \quad \text{for } v_i = c \\
EU_{YES,i} &< EU_{NO,i} \quad \text{for } v_i < c
\end{align*} \]

1) When \(q_i \left(\frac{I_i^E + 1}{N} \right) - q_i \left(\frac{I_i^E}{N} \right) \approx 0 \), the respondent is indifferent between voting “yes” and “no” regardless of his project valuation – lack of incentive compatibility.

2) When \(q_i \left(\frac{I_i^E + 1}{N} \right) - q_i \left(\frac{I_i^E}{N} \right) > 0 \), the incentive compatibility properties of the survey depend on \(EU_{I,i} - EU_{NI,i} \).
The survey is not incentive compatible when
\[q_i \left(\frac{I_i^E + 1}{N} \right) - q_i \left(\frac{I_i + 1}{N} \right) \approx 0, \] that is, when...

- The size of the voting population \((N)\) is close to infinity.
- Incentive properties may be weakened when an individual:
 - thinks that the probability of the project implementation \((q_i)\) increases non-linearly with the number of “yes” votes
 - and has strong expectations about preferences of others.

\[q_i \sum_{k=1}^{N} y_k \]

others are thought to be against the project

\[q_i \sum_{k=1}^{N} y_k \]

others are thought to be for the project

\[N/2 \]

majority voting
The survey is not incentive compatible when \(q_i \left(\frac{I_{-i}^E + 1}{N} \right) - q_i \left(\frac{I_{-i}^E}{N} \right) \approx 0 \), that is, when...

- The size of the voting population \((N)\) is close to infinity.
- Incentive properties may be weakened when an individual:
 - thinks that the probability of the project implementation \((q_i)\) increases non-linearly with the number of “yes” votes
 - and has strong expectations about preferences of others.

The importance of the own vote’s consequentiality
Incentive compatible survey

\[EU_{YES,i} - EU_{NO,i} = \left[q_i \left(\frac{I_i^E + 1}{N} \right) - q_i \left(\frac{I_i^E}{N} \right) \right] \left(EU_{I,i} - EU_{NI,i} \right) \]

Incentive compatibility holds iff

\[
\begin{align*}
EU_{YES,i} &> EU_{NO,i} \text{ for } v_i > c \\
EU_{YES,i} &= EU_{NO,i} \text{ for } v_i = c. \\
EU_{YES,i} &< EU_{NO,i} \text{ for } v_i < c
\end{align*}
\]

1) When \(q_i \left(\frac{I_i^E + 1}{N} \right) - q_i \left(\frac{I_i^E}{N} \right) \approx 0 \), the respondent is indifferent between voting “yes” and “no” regardless of his project valuation – lack of incentive compatibility.

2) When \(q_i \left(\frac{I_i^E + 1}{N} \right) - q_i \left(\frac{I_i^E}{N} \right) > 0 \) (the own vote is seen as consequential), the incentive compatibility properties of the survey depend on \(EU_{I,i} - EU_{NI,i} \).
Incentive compatible survey

\[EU_{YES,i} - EU_{NO,i} = q_i \left(\frac{I_i^E + 1}{N} \right) - q_i \left(\frac{I_i \varepsilon}{N} \right) \left(EU_{I,i} - EU_{NI,i} \right) \]

Incentive compatibility holds iff

\[
\begin{align*}
&EU_{YES,i} > EU_{NO,i} \quad \text{for } v_i > c \\
&EU_{YES,i} = EU_{NO,i} \quad \text{for } v_i = c. \quad \iff \quad EU_{I,i} > EU_{NI,i} \quad \text{for } v_i > c \\
&EU_{YES,i} < EU_{NO,i} \quad \text{for } v_i < c \\
&EU_{I,i} = EU_{NI,i} \quad \text{for } v_i = c \\
&EU_{I,i} < EU_{NI,i} \quad \text{for } v_i < c
\end{align*}
\]

1) When \(q_i \left(\frac{I_i^E + 1}{N} \right) - q_i \left(\frac{I_i \varepsilon}{N} \right) \approx 0 \), the respondent is indifferent between voting “yes” and “no” regardless of his project valuation – lack of incentive compatibility.

2) When \(q_i \left(\frac{I_i^E + 1}{N} \right) - q_i \left(\frac{I_i \varepsilon}{N} \right) > 0 \) (the own vote is seen as consequential),

the incentive compatibility properties of the survey depend on \(EU_{I,i} - EU_{NI,i} \).
How $EU_I - EU_{NI}$ affects incentive compatibility?

(For simplicity we drop index i.)
How $EU_I - EU_{NI}$ affects incentive compatibility?

(For simplicity we drop index i.)

![Diagram showing the relationship between project implementation and utility calculations.]

Endogeneity of consequentiality perceptions – respondents who attach a high value to a project may (be willing to) believe in high consequentiality of the survey because of the importance of the project to them (Herriges et al. 2010, Hwang et al. 2014).
How $EU_I - EU_{NI}$ affects incentive compatibility?

(For simplicity we drop index i.)

<table>
<thead>
<tr>
<th>Project</th>
<th>EU_{NI}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not implemented</td>
<td>$U(0)$</td>
</tr>
<tr>
<td>Implemented</td>
<td>EU_I</td>
</tr>
<tr>
<td>$p_s(v)$</td>
<td>Successful implementation</td>
</tr>
<tr>
<td>$1 - p_s(v)$</td>
<td>Unsuccessful implementation</td>
</tr>
<tr>
<td>$p_s(v)$</td>
<td>Payment collected</td>
</tr>
<tr>
<td>$1 - p_s(v)$</td>
<td>Payment not collected</td>
</tr>
<tr>
<td>$U(v-c)$</td>
<td>$U(v)$</td>
</tr>
<tr>
<td>$U(-c)$</td>
<td>$U(0)$</td>
</tr>
</tbody>
</table>

- $\frac{\partial(EU_I - EU_{NI})}{\partial(v-c)} > 0$
- For incentive compatibility, enough to verify when $EU_I - EU_{NI} = 0$ for $v-c = 0$.
- $EU_I - EU_{NI}$ is an increasing function of $v-c$.

Introduction

Our model

Literature

Own vote

Payment and provision

Conclusions
How $EU_I - EU_{NI}$ affects incentive compatibility?

(For simplicity we drop index i.)

<table>
<thead>
<tr>
<th>Project</th>
<th>Implemented</th>
<th>Not implemented</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$p_s(v)$</td>
<td>$U(0)$</td>
</tr>
<tr>
<td>$p_s(v)$</td>
<td>Successful implementation</td>
<td>$U(v-c)$</td>
</tr>
<tr>
<td>$1-p_s(v)$</td>
<td>Unsuccessful implementation</td>
<td>$U(-c)$</td>
</tr>
<tr>
<td>$p_p(v)$</td>
<td>Payment collected</td>
<td>$1-p_p(v)$</td>
</tr>
</tbody>
</table>

Obviously,
- when $p_s(v) = 1$ and $p_p(v) = 1$, the survey is incentive compatible;
- when $p_s(v) = 0$ and $p_p(v) = 0$, the survey is not incentive compatible.

Introduction

Our model

Literature

Own vote

Payment and provision

Conclusions
How \(EU_I - EU_{NI} \) affects incentive compatibility?

- Assume that \(p_p(v) \in (0,1) \) and \(p_s(v) \in (0,1) \).

- For \(v - c = 0 \), incentive compatibility holds when \(EU_I - EU_{NI} = 0 \), that is, when

\[
\frac{U(c) - U(0)}{U(0) - U(-c)} = \frac{p_p(1 - p_s)}{p_s(1 - p_p)}.
\]

The left-hand side is tied to the individual’s attitude towards risk.

<table>
<thead>
<tr>
<th>Truthful responding when...</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>For a risk-neutral individual, (U(c) - U(0) = U(0) - U(-c))</td>
<td>(p_s = p_p)</td>
</tr>
<tr>
<td>For a risk-averse individual, (U(c) - U(0) < U(0) - U(-c))</td>
<td>(p_s > p_p)</td>
</tr>
<tr>
<td>For a risk-loving individual, (U(c) - U(0) > U(0) - U(-c))</td>
<td>(p_s < p_p)</td>
</tr>
</tbody>
</table>
How $EU_I - EU_{NI}$ affects incentive compatibility?

- Assume that $p_p(v) \in (0,1)$ and $p_s(v) \in (0,1)$.

- For $v - c = 0$, incentive compatibility holds when $EU_I - EU_{NI} = 0$, that is, when
 \[
 \frac{U(c) - U(0)}{U(0) - U(-c)} = \frac{p_p(1 - p_s)}{p_s(1 - p_p)}.
 \]

 The left-hand side is clearly tied to the individual’s attitude towards risk.

- Truthful responding when...

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Condition</th>
<th>Difference Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>For a risk-neutral individual, $U(c) - U(0) = U(0) - U(-c)$</td>
<td>$p_s = p_p$</td>
<td>$p_s - p_p$</td>
</tr>
<tr>
<td>For a risk-averse individual, $U(c) - U(0) < U(0) - U(-c)$</td>
<td>$p_s > p_p$</td>
<td>The stronger the risk aversion, the larger the difference $p_s - p_p$ must be for incentive compatibility.</td>
</tr>
<tr>
<td>For a risk-loving individual, $U(c) - U(0) > U(0) - U(-c)$</td>
<td>$p_s < p_p$</td>
<td>The stronger the risk preference, the larger the difference $p_p - p_s$ must be for incentive compatibility.</td>
</tr>
</tbody>
</table>
How $EU_I - EU_{NI}$ affects incentive compatibility?

The importance of the subjectively perceived provision consequentiality

The importance of the subjectively perceived payment consequentiality

<table>
<thead>
<tr>
<th>For a risk-neutral individual, $U(c) - U(0) = U(0) - U(-c)$</th>
<th>Truthful responding when...</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_s = p_p$</td>
<td>The stronger the risk aversion, the larger the difference $p_s - p_p$ must be for incentive compatibility.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>For a risk-averse individual, $U(c) - U(0) < U(0) - U(-c)$</th>
<th>$p_s > p_p$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_s > p_p$</td>
<td>The stronger the risk preference, the larger the difference $p_p - p_s$ must be for incentive compatibility.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>For a risk-loving individual, $U(c) - U(0) > U(0) - U(-c)$</th>
<th></th>
</tr>
</thead>
</table>
Conclusions

• An essential role of consequentiality perceptions for respondents’ behaviour in stated preference surveys with a coercive payment.

• Elicited preferences may be biased when it is not taken into account that the respondents’ perceptions might diverge from the information in survey scripts.

• Instead of measuring self-perceived consequentiality as a whole, one should include separate questions measuring individual’s perceptions over:
 – own vote’s consequentiality,
 – provision consequentiality,
 – payment consequentiality.

• Additionally, the individual’s risk attitude should be controlled for.
Summary: Possible bias

A respondent does not have incentives to answer truthfully when he does not believe in consequentiality of the own vote, which may happen for
- An infinitely large research sample;
- Strong expectations about preferences of other voters.

Theoretical predictions
- Empirical verification in progress
- Crucial implications for validity of value estimates based on stated preferences
Ewa Zawojska

University of Warsaw, Department of Economics
ezawojska@wne.uw.edu.pl