
Introduction
Libraries and frameworks

Scraping a single page

Web scraping and social media scraping –
scraping a single, static page

Jacek Lewkowicz, Dorota Celińska-Kopczyńska

University of Warsaw

March 19, 2019

Introduction
Libraries and frameworks

Scraping a single page

What have we learnt so far?

The logic of the structure of XML/HTML documents

How to write easy (and more complex) XPaths

The principles of responsible scraping

Introduction
Libraries and frameworks

Scraping a single page

What we will be working on today?

How to start a project in Scrapy or Beautiful Soup

How to write a simple scraper

Especially, how to deal with scraping tables

Note: In this lecture we will show how to scrap statically generated
sites. Crawling and simulating the user will be covered later!

Introduction
Libraries and frameworks

Scraping a single page

Convention

In snippets, we will highlight in violet the areas where you
may put your own content

In commands, the areas in [] are optional

UNIX-like systems use “/” as the path separator and DOS
uses “\”. In this presentation the paths will be written
in UNIX-like convention if not stated otherwise

Introduction
Libraries and frameworks

Scraping a single page

Before we start – useful command line commands

Description Windows (DOS) UNIX-like
change directory CD, CHDIR cd

copy files COPY cp [-r]

move files MOVE mv

delete files DEL rm

delete directories DELTREE rm -r

delete empty directories RMDIR rmdir

list files in directory DIR ls [-lah]

create directory MD, MKDIR mkdir

Introduction
Libraries and frameworks

Scraping a single page

Beautiful Soup
Scrapy

Running Beautiful Soup

import all the necessary libraries

import requests

from bs4 import BeautifulSoup

#specify the url of the website you want to scrape

url = ’http://your-site-here.net’

r = requests.get(url)

html doc = r.text

#creation of a BeautifulSoup object

soup = BeautifulSoup(html doc)

pretty soup = soup.prettify()

print(pretty soup)

#code the part that extracts the data

#remember to extract responsibly

Introduction
Libraries and frameworks

Scraping a single page

Beautiful Soup
Scrapy

Saving data

import csv

from datetime import datetime

open a csv file with append, so old data will not be erased

with open(‘filename.csv’, ‘a’) as csv file:

writer = csv.writer(csv file)

writer.writerow([item1, item2, datetime.now()])

Introduction
Libraries and frameworks

Scraping a single page

Beautiful Soup
Scrapy

Typical approach

You filter the parts of the HTML code:

findAll(tag, attributes, recursive, text, limit,

keywords)

find(tag, attributes, recursive, text, keywords)

Examples:

allText = bsObj.findAll(id="text")

print(allText[0].get text())

Introduction
Libraries and frameworks

Scraping a single page

Beautiful Soup
Scrapy

Xpaths in Beautiful Soup

Typically you do not use XPaths natively in Beautiful Soup

You will need to use functions from lxml package instead
(not covered in classes)

from lxml import etree

with open(’index.html’, ’r’) as myfile:

data=myfile.read()

root = etree.fromstring(data)

item = etree.ETXPath("//*[text()=’Searched Text’]") (root)

Introduction
Libraries and frameworks

Scraping a single page

Beautiful Soup
Scrapy

Scrapy – starting a project

Description Windows (DOS) UNIX-like
1. Open the command
line tool

menu Start → cmd open console

2. Navigate to desired
location

cd ..|\disk:\path\to\dir cd ..|/path/to/dir

3. Start a project scrapy startproject

projectname

scrapy startproject

projectname

Introduction
Libraries and frameworks

Scraping a single page

Beautiful Soup
Scrapy

Content of the project directory in Scrapy

projectname/

scrapy.cfg # deploy configuration file

projectname/ # project’s Python module, you’ll import your code from here

__init__.py

items.py # project items definition file

middlewares.py # project middlewares file

pipelines.py # project pipelines file

settings.py # project settings file

spiders/ # a directory where you’ll later put your spiders

__init__.py

Introduction
Libraries and frameworks

Scraping a single page

Beautiful Soup
Scrapy

Structure of the spider in Scrapy

import scrapy
import necessary library

class NameItem(scrapy.Item):
url = scrapy.Field()
field name = scrapy.Field()
another fiel name = scrapy.Field()

class Name of YourSpider(scrapy.Spider):
name = ’myFirstSpider’
here we will provide the starting urls
note the subtle difference between using [] and () while providing lists of urls
start urls = [

’’http://your site here.net/1/’,
’’http://your site here.net/2/’,]

here we will (optionally) declare the rules for crawlers and modify the scrapers

def __init__(self, category=None, *args, **kwargs):
super(Name of YourSpider, self).__init__(*args, **kwargs)
self.module you change = put your code here

here we will put our xpaths, we start with initializing the item
def parse(self,response):
item = NamenItem()

item[’url’]= response.url
item[’field name’] = response.xpath(’//insert/xpath/here’).getall()
item[’another field name’] = response.xpath(’//insert/xpath/here/text()’).getall()
yield item

Introduction
Libraries and frameworks

Scraping a single page

Beautiful Soup
Scrapy

Changes in Scrapy 1.6.0

Modern scrapy projects use getall() or get() methods

Those methods have the same effect as extract() or
extract first() you may find in older tutorials

All of them are correct, project managers do not plan to
deprecate it

More: http://docs.scrapy.org/en/latest/topics/

selectors.html#extract-and-extract-first

http://docs.scrapy.org/en/latest/topics/selectors.html##extract-and-extract-first
http://docs.scrapy.org/en/latest/topics/selectors.html##extract-and-extract-first

Introduction
Libraries and frameworks

Scraping a single page

Beautiful Soup
Scrapy

Interactive mode of scrapy shell

Scrapy provides an interactive shell where you can try and
debug your code quickly without running the spider

scrapy shell /absolute/path/to/file

scrapy shell ‘‘http://enter-your-site-here.net’’

To end the session type ctrl-z in Windows or ctrl-d in
UNIX-like systems

Note: When using relative file paths be explicit and prepend them
with ./ or ../ when applicable

Introduction
Libraries and frameworks

Scraping a single page

Beautiful Soup
Scrapy

Example of shell session

2018-03-06 17:33:07 [scrapy] INFO: Scrapy 1.1.0 started (bot: hiperbug)
2018-03-06 17:33:07 [scrapy] DEBUG: Telnet console listening on 127.0.0.1:6023
2018-03-06 17:33:07 [scrapy] INFO: Spider opened
2018-03-06 17:33:10 [scrapy] DEBUG: Crawled (200) <GET https://www.reddit.com/robots.txt> (referer: None)
2018-03-06 17:33:11 [scrapy] DEBUG: Crawled (200) <GET https://www.reddit.com/r/roguelikes/> (referer: None)
[s] Available Scrapy objects:
[s] crawler <scrapy.crawler.Crawler object at 0x7fd53b265cd0>
[s] item {}
[s] request <GET https://www.reddit.com/r/roguelikes/>
[s] response <200 https://www.reddit.com/r/roguelikes/>
[s] settings <scrapy.settings.Settings object at 0x7fd53b2658d0>
[s] spider <DefaultSpider ’default’ at 0x7fd539cea2d0>
[s] Useful shortcuts:
[s] shelp() Shell help (print this help)
[s] fetch(req_or_url) Fetch request (or URL) and update local objects
[s] view(response) View response in a browser
>>> response.xpath(’//title/text()’).getall()
[u’Roguelikes!’]
>>> response.xpath(’//title’).getall()
[u’<title>Roguelikes!</title>’]

Introduction
Libraries and frameworks

Scraping a single page

Beautiful Soup
Scrapy

Running the spider and saving the output

You run the bot from the command line in the directory which
contains your spiders

To save the data you may use -o option and provide the name
of the file

Scrapy supports several formats of output files, here we will
show how to save .csv file

scrapy crawl name of your spider [-o resulting file.csv]

scrapy crawl myFirstSpider [-o resulting file.csv]

Introduction
Libraries and frameworks

Scraping a single page

General idea
Example
Scraping tables

Procedure of scraping a single page

1 Find the url of your site

2 Investigate if this is a dynamically or statically generated page
– there are different approaches to extract data!

3 Decide which framework/library you will use

4 Find the crucial areas and tokens you want to scrap and
investigate the source code – if you use XPaths, try to write
or copy them

5 Write the scraper

6 Run the scraper, check if the output is correct, debug the code

7 Repeat point 6 until you are satisfied (:

8 Analyze the data or leave it to your ordering party

Introduction
Libraries and frameworks

Scraping a single page

General idea
Example
Scraping tables

Tips for writing code

In Windows better use ‘‘ instead of ’

No matter the operating system, decide whether you use tabs
or spaces and be consistent

Using XPaths or the HTTP tags does not mean that you are
not allowed to use other algorithms or functions!

Tidying data is always a bottleneck – decide what (and if)
you can move to analysis stage

Usually text preprocessing (removing newlines and
unnecessary characters) does not significantly slow down the
performance of our bot

Use the loops and predicates wisely and be aware of your
hardware limitations

Introduction
Libraries and frameworks

Scraping a single page

General idea
Example
Scraping tables

Arbitrary page – Beautiful Soup

Let us scrape an arbitrary Wikipedia page (text)

import requests

from bs4 import BeautifulSoup

url = ’https://en.wikipedia.org/wiki/Edvard_Munch’

r = requests.get(url)

html_doc = r.text

soup = BeautifulSoup(html_doc)

edvard_title = soup.title

print(edvard_title)

edvard_text = soup.get_text()

print(edvard_text)

Introduction
Libraries and frameworks

Scraping a single page

General idea
Example
Scraping tables

Arbitrary page – Beautiful Soup

Now we get hyperlinks from Wikipedia page (text)

import requests

from bs4 import BeautifulSoup

url = ’https://en.wikipedia.org/wiki/Edvard_Munch’

r = requests.get(url)

html_doc = r.text

soup = BeautifulSoup(html_doc)

print(soup.title)

tags = soup.find_all(’a’)

for link in tags:

print(link.get(’href’))

Introduction
Libraries and frameworks

Scraping a single page

General idea
Example
Scraping tables

Arbitrary page – Scrapy

Usually it is not very different from the example code we show
earlier

You just specify the content you want to retrieve (item class)
and get it with XPaths and some additional coding for control
flow (parse() function)

You also provide a starting url in the respective field

Introduction
Libraries and frameworks

Scraping a single page

General idea
Example
Scraping tables

Arbitrary page – wget

This is an example to boost your curiosity

Sometimes it is easier (but also significantly slower) to get the
source code via wget

And later parse it with core utils and shell programming
#!/bin/zsh

echo "user;date;package" >$2;

for x in $(cat $1); do

wget -O example.html "https:insert-your-site-here.net/$x";

grep "commented on" <example.html | tr -d "t" > comments;

sed -e "s|$|;$x|" -e ’s| commented on |;|g’ <comments >>$2;

rm comments example.html;

done;

Introduction
Libraries and frameworks

Scraping a single page

General idea
Example
Scraping tables

Scraping tables – easy and amazing part

Scraping tables will be probably one of the most common
situations you will use scraping for

It can be both quite easy and quite though, amazing and
terrifying (depending on the table)

The easy part is that usually the code of table will be well
structured and relatively easy to access

The amazing part: you can scrap it in a few ways!

Introduction
Libraries and frameworks

Scraping a single page

General idea
Example
Scraping tables

Scraping tables – though and terrifying part

The though part appears if the table’s fields differ among your
crawled sited

The terrifying part: you can scrap it in a few ways!

...However, for the tables which differ in the placing of the
context or you are unable to specify how many entries the
table has, you will not go without some basic programming

... And you may end with a monster like this: (it is only part
of the code...)

Introduction
Libraries and frameworks

Scraping a single page

General idea
Example
Scraping tables

Scraping tables – though and terrifying part

has or not keywords
if response.xpath(’//*[@id="iinfo"]/tbody/tr[5]/td/a[contains(@class, "keyword")]/text()’):

item[’keyword’] = response.xpath(’//*[@id="iinfo"]/tbody/tr[5]/td/a[contains(@class,"keyword")]/text()’).re(’[-\w+:#]+’)
item[’licenses’] = response.xpath(’//*[@id="iinfo"]/tbody/tr[6]/td/span/text()’).re(’[-\w:+#]+’)

#has or not groups
if response.xpath(’//*[@id="iinfo"]/tbody/tr[7]/th/text()’).re(’[-\w+:#]+’)[0] == "Groups:":

item[’groups’] = response.xpath(’//*[@id="iinfo"]/tbody/tr[7]/td/span/text()’).re(’[-\w+:#]+’)

#has or not conflicts and provides
if response.xpath(’//*[@id="iinfo"]/tbody/tr[8]/th/text()’).re(’[\w+:#]+’)[0] == "Conflicts:":

item[’conflicts’] = response.xpath(’//*[@id="iinfo"]/tbody/tr[8]/td/span/text()’).re(’[-\w+:#]+’)
if response.xpath(’//*[@id="iinfo"]/tbody/tr[9]/th/text()’).re(’[\w:+#]+’)[0] == "Provides:":
item[’provides’] = response.xpath(’//*[@id="iinfo"]/tbody/tr[9]/td/span/text()’).re(’[-\w:+#]+’)
if response.xpath(’//*[@id="iinfo"]/tbody/tr[10]/th/text()’).re(’[\w:+#]+’)[0] == "Replaces:":

item[’replaces’] = response.xpath(’//*[@id="iinfo"]/tbody/tr[10]/td/span/text()’).re(’[\w:+#]+’)
item[’responsible’] = response.xpath(’//*[@id="iinfo"]/tbody/tr[11]/td/text()’).getall()
item[’owner’] = response.xpath(’//*[@id="iinfo"]/tbody/tr[13]/td/text()’).getall()
item[’votes’] = response.xpath(’//*[@id="iinfo"]/tbody/tr[14]/td/text()’).getall()
item[’popularity’] = response.xpath(’//*[@id="iinfo"]/tbody/tr[15]/td/text()’).getall()
item[’first’] = response.xpath(’//*[@id="iinfo"]/tbody/tr[16]/td/text()’).getall()
item[’last_updated’] = response.xpath(’//*[@id="iinfo"]/tbody/tr[17]/td/text()’).getall()

else:
item[’replaces’] = "9999"
item[’responsible’] = response.xpath(’//*[@id="iinfo"]/tbody/tr[10]/td/text()’).getall()
item[’owner’] = response.xpath(’//*[@id="iinfo"]/tbody/tr[12]/td/text()’).getall()
item[’votes’] = response.xpath(’//*[@id="iinfo"]/tbody/tr[13]/td/text()’).getall()
item[’popularity’] = response.xpath(’//*[@id="iinfo"]/tbody/tr[14]/td/text()’).getall()
item[’first’] = response.xpath(’//*[@id="iinfo"]/tbody/tr[15]/td/text()’).getall()
item[’last_updated’] = response.xpath(’//*[@id="iinfo"]/tbody/tr[16]/td/text()’).getall()

else:
item[’provides’] = "9999"
if response.xpath(’//*[@id="iinfo"]/tbody/tr[9]/th/text()’).re(’[\w:+#]+’)[0] == "Replaces:":

item[’replaces’] = response.xpath(’//*[@id="iinfo"]/tbody/tr[9]/td/span/text()’).re(’[\w:+#]+’)
item[’responsible’] = response.xpath(’//*[@id="iinfo"]/tbody/tr[10]/td/text()’).getall()
item[’owner’] = response.xpath(’//*[@id="iinfo"]/tbody/tr[12]/td/text()’).getall()
item[’votes’] = response.xpath(’//*[@id="iinfo"]/tbody/tr[13]/td/text()’).getall()

Introduction
Libraries and frameworks

Scraping a single page

General idea
Example
Scraping tables

Scraping tables – Beautiful Soup way

The easy way to get the whole table (basic programming
skills):

soup = BeautifulSoup(HTML)

the first argument to find tells it what tag to search for
the second you can pass a dict of attr->value pairs to filter
results that match the first tag
table = soup.find("table", {"title":"TheTitle"})

rows=list()
for row in table.findAll("tr"):

rows.append(row)

now rows contains each tr in the table (as a BeautifulSoup object)
and you can search them to pull out the times
Source: https://stackoverflow.com/questions/2935658/beautifulsoup-get-the-contents-of-a-specific-table

The more complex (but pretty) way to get the whole table
(functional programming involved):

html = urllib2.urlopen(url).read()
bs = BeautifulSoup(html)
table = bs.find(lambda tag: tag.name==’table’ and tag.has_key(’id’) and tag[’id’]=="Table1")
rows = table.findAll(lambda tag: tag.name==’tr’)
Source: https://stackoverflow.com/questions/2935658/beautifulsoup-get-the-contents-of-a-specific-table

Introduction
Libraries and frameworks

Scraping a single page

General idea
Example
Scraping tables

Scraping tables – Beautiful Soup way #2

another example
import requests
from bs4 import BeautifulSoup

web_url = requests.get(’https://en.wikipedia.org/wiki/List_of_European_countries_by_area’).text
soup = BeautifulSoup(web_url,’lxml’)
print(soup.prettify())

table = soup.find(’table’,{’class’:’wikitable sortable’})
table

extract all the links within <a>
links = table.findAll(’a’)

do the list of countries
for link in links: Countries.append(link.get(’title’))
print(Countries)

how about data frame?
import pandas as pd
df = pd.DataFrame()
df[’Country’] = Countries
df

Introduction
Libraries and frameworks

Scraping a single page

General idea
Example
Scraping tables

Scraping tables – the Scrapy way

If the information is always stored in one determined place:
copy XPath

If you are going to crawl more pages: check if the tables
contain the same fields

If not: copy a few XPaths, investigate the changes

If XPath contains non-deterministic parts, try rewrite it (you
know how)

Consider using loops and conditions if you cannot determine
the number of the fields/rows

Use {}.format(var) to your advantage! See the example:

def parse(self,response):
i = 1
while (response.xpath(’//*[@id="some-id"]/table/tbody/tr[{}]/td[1]/text()’.format(i)).getall()):

item[’name’]=response.xpath(’//*[@id="some-id"]/table/tbody/tr[{}]/td[3]/a/text()’.format(i)).getall()

Introduction
Libraries and frameworks

Scraping a single page

General idea
Example
Scraping tables

Sad conclusion

I suppose that Beautiful Soup way may be more appealing to
you so far...

But at some point (and in more complex projects) you will
probably end with using Scrapy

Or anything else what was not covered during classes

Mostly because of the performance issues and amount of
coding to the efectiveness of bot ratio

You are also not able to predict what you will be using in even
five years from now

So – learn the ideas and workarounds, not the exact code

	Introduction
	Libraries and frameworks
	Beautiful Soup
	Scrapy

	Scraping a single page
	General idea
	Example
	Scraping tables

