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 Czy potrafimy danej krzywej obojętności przypisać liczbę?

Krzywe obojętności - przypomnienie
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Liczby porządkowe i kardynalne

 Pojęcia matematyczne, pochodzące z teorii zbiorów

 Liczby kardynalne

 Mówią o liczbie elementów w zbiorze

 Możemy je dodawać, mnożyć, potęgować, …

 Liczby porządkowe

 Mówią wyłącznie o porządku (kolejności) elementów w zbiorze

 Porządku nie możemy dodawać ani mnożyć

 Informacja o tym, że coś jest drugą największą wartością w 
zbiorze nie mówi nam nic o samej wartości

 Jak układanie kolejnych warstw lub szczebli na drabinie
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Funkcja użyteczności

 Jeśli preferencje są racjonalne i ciągłe – mogą zostać 
opisane za pomocą funkcji użyteczności

 Funkcja użyteczności to funkcja, która spełnia warunki:

 Funkcja użyteczności jest funkcją porządkową:

 i                        to     jest ściśle preferowany 
względem     , ale niekoniecznie trzy razy bardziej

 Wartości funkcji nazywamy poziomami użyteczności
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Funkcje użyteczności

 Kiedy nie możemy utworzyć funkcji użyteczności?

 Np. kiedy preferencja nie posiada własności przechodniości

 Jeżeli:

 Czy potrafimy stworzyć funkcję użyteczności?
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Funkcja użyteczności

 Funkcja użyteczności porządkuje różne koszyki nadając im 
różne wartości użyteczności

 Każda relacja preferencji może mieć wiele funkcji 
użyteczności, które będą ją reprezentować

 Każda ściśle rosnąca transformacja funkcji użyteczności 
jest nową funkcją użyteczności, która reprezentuje te 
same preferencje

 Np. załóżmy, że                                   reprezentuje preferencje

 Wtedy                          ,                         , 

 Ściśle rosnąca transformacja funkcji użyteczności to np.

 Czy nowa funkcja zachowuje preferencje?

 1 2 1 2,U x x x x

 4,1 4U   2,3 6U   2,2 4U 

      
2 2

1 2 1 2 1 2, , 10 10U x x U x x x x    



© Mikołaj Czajkowski, Maciej Wilamowski

Funkcje użyteczności – przykłady

 Krzywa obojętności – zawiera wszystkie koszyki, które 
dają tę samą użyteczność

 Jak wyglądają krzywe obojętności funkcji użyteczności o 
postaci                                ? 1 2 1 2,U x x x x

 1 2 1 2,U x x x x
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Funkcja użyteczności - znaczenie

 Określenie funkcji użyteczności pozwala na:

 Estymację preferencji konsumentów.

 Analizę dokonywanych przez nich wyborów

 Ocenę i porównanie wielu hipotetycznych sytuacji 
konsumenta.

 Optymalizację wyborów konsumentów (określenie sposobu 
podejmowania decyzji – dokonywania wyborów).
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Funkcje użyteczności – przykłady

 Jak wyglądają krzywe obojętności funkcji użyteczności o 
postaci                                     ? 1 2 1 2,U x x x x 
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Funkcja użyteczności dóbr 
doskonale substytucyjnych:

 1 2 1 2,U x x ax bx 
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Funkcje użyteczności – przykłady

 Jak wyglądają krzywe obojętności funkcji użyteczności o 
postaci                                             ?   1 2 1 2, min ,U x x x x
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Funkcja użyteczności dóbr 
doskonale komplementarnych:

   1 2 1 2, min ,U x x ax bx
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 1 2min , 9x x 
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Funkcje użyteczności – przykłady

 Quasi-liniowa funkcja użyteczności ma postać:

 Liniowa tylko względem       – quasi-liniowa

 Np. 

   1 2 1 2,U x x f x x 

2x

  1 2

1 2 1 2, 2U x x x x 
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Krzywe obojętności quasi-liniowej funkcji 
obojętności są liniowym przesunięciem 

samych siebie wzdłuż osi reprezentującej 
‘quasi-liniowe’ dobro

Dla danej ilości ‘niequasi-
liniowego’ dobra nachylenie 

wszystkich izokwant jednakowe
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Funkcje użyteczności

 Funkcja użyteczności typu Cobba-Douglasa

 1 2 1 2,U x x Ax x 

1x

2x

Wszystkie krzywe obojętności 
hiperbolami – osie asymptotami 

każdej z nich
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Użyteczność krańcowa

 W ekonomii ‘krańcowa’ (ang. marginal) oznacza wynikająca ze zmiany 
zmiennej o jednostkę, gdzie ‘jednostka’ jest nieskończenie mała

 Np. jak zmienia się użyteczność na skutek (krańcowej) zmiany ilości jednego z 
dóbr w koszyku?

 Użyteczność krańcowa

 Więc – jeśli funkcja różniczkowalna – krańcowa użyteczność dobra to pochodna 
funkcji użyteczności po tym dobrze

 Pamiętając o tym, że użyteczność jest porządkowa to użyteczność 
krańcowa mów nam (parafrazując):

 „O ile poziomów (szczebli) krzywych obojętności wskoczę do góry przy wzroście 
zasobu dobra”?
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Użyteczność krańcowa

 Na przykład dla funkcji:

 Krańcowa użyteczność danego dobra dla tej funkcji 
użyteczności zależy od tego jaki jest aktualnie poziom 
drugiego dobra w koszyku

 1 2 1 2,U x x Ax x
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Użyteczność krańcowa

 Funkcja użyteczności typu Cobba-Douglasa

 1 2 1 2,U x x Ax x 

1x

2x

Krańcowa użyteczność mówi nam o tym 
jak zmieni się użyteczność jeżeli,
ceteris paribus zwiększymy zasób 

jednego dobra
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Użyteczność krańcowa

 Przydatne narzędzie: www.wolframalpha.com

 Prosta składnia:

 plot 10=x*y, 10=x*y^0.5, 10=x*y^0.25 for x from 0 to 25 and y from 0 to 5

 plot 5=x*y, 10=x*y, 15=x*y for x from 0 to 25 and y from 0 to 5
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2dx

1dx

Nachylenie krzywych obojętności

 Nachylenie krzywej obojętności w punkcie to
krańcowa stopa substytucji (marginal rate of substitution, MRS)

 W jakiej proporcji można zastępować 2 dobra w koszykach, aby 
konsument nadal był indyferentny pomiędzy koszykami
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Krańcowa stopa substytucji

 Powiedzieliśmy, że krańcowa stopa substytucji określa jak 
można wymieniać dobra w koszyku, pozostając na k.o.

 Krzywa obojętności dla użyteczności       dana jest przez:

 Całkowita zmiana użyteczności – pochodna funkcji po każdej ze 
zmiennych razy krańcowo mała zmiana tej zmiennej

 … równa zero, ponieważ chcemy zostać na krzywej obojętności

 Przekształcając:
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Krańcowa stopa substytucji

 Pozostając na danej krzywej obojętności krańcowo małe 
ilości dóbr                 można wymieniać w proporcji 
określonej przez MRS:

 MRS określa nachylenie krzywej obojętności w danym jej 
punkcie

 Na przykład dla funkcji użyteczności typu Cobba-Douglasa o 
postaci                                          MRS wynosi:
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Krańcowa stopa substytucji

 Dla funkcji użyteczności                                :
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Krańcowa stopa substytucji

 Dla quasi-liniowej funkcji użyteczności

 Krańcowa stopa substytucji nie zależy od       więc nachylenie 
krzywych obojętności dla tego samego       będzie równe
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Krańcowa stopa substytucji

 Dla quasi-liniowej funkcji użyteczności   1 2
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Krańcowa stopa substytucji

 Dla doskonałych substytutów:  1 2 1 2,U x x ax bx 

1 2

1 2

x x
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MRS stałe w każdym punkcie 
– określa nachylenie 

krzywych obojętności
(które są prostymi)
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Krańcowa stopa substytucji

 Dla dóbr doskonale komplementarnych:
   1 2 1 2, min ,U x x ax bx

1x

2x
1 2ax bx

MRS nieokreślone 
(funkcja użyteczności 
nieróżniczkowalna)

Wiele możliwych ‘stycznych’
1 2

?x xMRS 
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Krańcowa stopa substytucji

 Powiedzieliśmy, że każda ściśle rosnąca transformacja 
funkcji użyteczności zachowuje te same preferencje

 Co więcej – nie zmienia MRS

 MRS jest niezależne od monotonicznych transformacji funkcji
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MRS a krańcowa użyteczność

Dla utrwalenia

 Krańcowa użyteczność mówi nam jak zmieni się użyteczność 
(przeskoczymy na inną krzywą obojętności)

 Krańcowa stopa substytucji mówi nam o tym w jakiej 
proporcji muszę zamieniać dobra aby nie zmienić użyteczności 
(pozostać na tej samej krzywej obojętności)
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Malejąca krańcowa stopa substytucji

 Dla funkcji użyteczności:

 Malejący MRS

 Nachylenie co do wartości bezwzględnej maleje (gdy 
zamieniamy dobro x2 na x1

 Oznacza to, że pochodna z wartości bezwzględnej MRS
jest mniejsza od zera

 W praktyce oznacza to, że wartość bezwzględna MRS musi 
dążyć do jakiejś granicy (zazwyczaj zera)

 1 2 1 2,U x x x x
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2x
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| |
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Nachylenie krzywych obojętności

 Prawo ‘malejącej’ krańcowej stopy substytucji

1x

2x

5MRS  

0,5MRS  

MRS maleje (co do wartości 
bezwzględnej) ze wzrostem    
 preferencje ściśle wypukłe 

Kiedy obydwa dobra (+)

1x
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Praca samodzielna

 Literatura

 Varian: Wybór


