Microeconometrics

Aneta Dzik-Walczak Kateryna Zabarina 2022/2023

Microeconometrics

□ Classes:

- OLS revision
- Initial Data Analysis, OLS estimation, diagnostic tests
- Panel Data Analysis (RE, FE)
- Advanced Panel Models
- LPM, Logit, Probit, Ordered Models
- Test
- Students' Presentations

Microeconometrics

- □ 1 absence is allowed
- □ Class grade (each part has to be passed)
 - Model (50%)
 - Presentation (20%)
 - Test (30%)
- ☐ Final grade (Jerzy Mycielski)
 - Based on class grade and exam grade

Model

- □ Introduction
- □ Economic theory
- □ Literature review (5 empirical articles)
 - Hypothesis
- Dataset description
- □ Initial data analysis
 - Variables description
 - Descriptive statistics
 - Graphical analysis (histogram, box-plot)
 - Relations between variables (correlation, scatterplot)
 - Tests (e.g. Equality of Means)
- Estimation
- □ Parameters interpretation
- □ Verification of hypothesis
- □ Summary (literature context)

Parametric vs. non-parametric tests

	Paramet	Non-parametric tests	
2 independent samples	Small sample, normal distribution, T test	Large sample, T test	Mann-Withney
2 dependent samples	Small sample, normal distribution, T test	Wilcoxon	
	Small sample, normal distribution, ANOVA ANOVA ANOVA		Kruskal-Wallis
>2 independent samples			
	Tuckey, Bonn	Mann-Withney	
	Small sample, normal distribution, ANOVA	Large sample, ANOVA	Friedman
>2 dependent samples			
	Tuckey, Bonn	Wilcoxon	

- □ Introduction
 - Main goal
 - Motivation

like in Bachelor Thesis

- □ Economic Theory
 - Main idea
 - Definitions
 - □ Assumptions

- □ Hypotheses
 - Statements that can be verified
 - □ Women earn less then men

□ Results

- Presented in a friendly and transparent way
 - No screenshots from STATA

Variable	Hypothesis	Parameter estimate
Sex 0-man 1-womam	-	-100 **
Experience	+	30 ***

- Significance level: * 10%, **5%, *** 1%
- Coefficient interpretation
- Summary in the context of the hypotheses and literature

Deadlines

- Investigated problem
 - 09.01.2023 (email)
- Presentation
 - 23.01.2023 (email)
- □ Model (email: report, dataset, do-file)
 - **23.01.2023**

Models from previous years

- □ The Effect of Human Capital on the Performance of Enterprises in an Industrial Cluster in Northern Vietnam
- □ Why FDI impacts on economic growth in Sub-Saharan African countries?
- ☐ The effective elements on women participation in the labor market-Poland
- □ Short- term impact of public debt and fiscal deficit on growth
- ☐ The impact of the WTO on its members' trade. Panel data analysis
- WHO GETS THE JOB? ANALYZING FACTORS DETERMINIG PROBABILITY OF BEING EMPLOYED
- □ Economic status of Spanish-speaking Hispanic US citizens the case of Puerto Rico

Team	Subject

Ordinary Least Squares (OLS)

$$Y=X\beta+\varepsilon$$

□ Wooldrige, Jeffrey M, *Econometric analysis of cross section and panel data*, The MIT Press, Cambridge 2002

```
xi: req dochq i.sex i.gredu
            Isex 1-2
                         (naturally coded; Isex 1 omitted)
i.sex
            Igredu 1-4
                            (naturally coded; Igredu 1 omitted)
i.gredu
                                       Number of obs = 20884
    Source | SS df
                        MS
                                       F(4, 20879) = 577.49
    Model | 1.3302e+10 4 3.3255e+09
                                       Prob > F = 0.0000
                                       R-squared = 0.0996
  Residual | 1.2023e+11 20879 5758596.66
                                       Adj R-squared = 0.0994
     Total | 1.3354e+11 20883 6394479.9
                                       Root MSE = 2399.7
   dochg | Coef. Std. Err. t P>|t| [95% Conf. Interval]
   Isex 2 | -695.714 36.61821 -19.00 0.000 -767.4885 -623.9394
  cons | 5361.137 41.00044 130.76 0.000 5280.773 5441.501
```

dochg	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
_Isex_2 _Igredu_2 _Igredu_3 _Igredu_4 _cons	-695.714 -1391.613 -2005.016 -2431.217 5361.137	36.61821 47.21045 47.66322 64.16855 41.00044	-19.00 -29.48 -42.07 -37.89 130.76	0.000 0.000 0.000 0.000 0.000	-767.4885 -1484.149 -2098.44 -2556.992 5280.773	-623.9394 -1299.077 -1911.593 -2305.441 5441.501

- □ Explained variable:
 - Income (dochg)- continuous variable (unit = 1 euro)
- □ Explanatory variables:
 - Sex (sex) binary variable (1-man, 2 -woman)
 - Education level (gredu) discrete variable (1- higher, 2- secondary, 3- lower secondary, 4- primary)
- □ Women have a lower income than men by 695 Euros (on average)
- □ People with secondary education have income lower by 1391 Euros than those with higher education (on average)
- □ People with lower secondary education have income lower by 2005 Euros than those with higher education (on average)
- People with primary education have income lower by 2431 Euros than those with higher education (on average)

reg so dochg sex

so					[95% Conf.	Interval]
dochg sex	.0000332 0053723	6.78e-07 .0036936	48.90 -1.45	0.000 0.146	.0000319	.0018674

- □ Explained variable:
 - Savings rate (so) continuous variable (unit= 1 percentage point)
- □ Explanatory variables:
 - Income (dochg) continuous variable (unit= 1 euro)
 - Sex (sex) binary variable (1-man, 2-woman)
- □ We interpret coefficients as **partial effect**:
- The increase in income by one unit increases the savings rate by 0.00003 units. More specifically: increase in income by 1 Euro increases the savings rate by 0.00003 percentage points.
- Knowing the properties of OLS model, we know that the scaling of variable leads to an appropriate scaling of parameter. Thus, the interpretation may be as follows: Increase in income by 1000 Euros increases the savings rate by 0.03 percentage points.

reg lnso lndochg sex

lnso					[95% Conf.	Interval]
lndochg sex	.0425764 0038458 -5.162073	.0139643 .0166148	31.69 -0.23	0.000 0.817	.4152048 0364127 -5.392765	.4699479 .0287211 -4.93138

- □ Explained variable
 - Logarithm of savings rate (lnso)- continuous variable
- □ Explanatory variables
 - Logarithm of income (Indochg) –continuous variable
 - Sex (sex) binary variable (1-man, 2-woman)
- □ We interpret Indochg coefficient as **elasticity**
 - The increase in income by 1% increases the savings rate by 0,04%
- □ We interpret sex coefficient as **semi-elasticity**
 - Women have a lower savings rate than men on average by 0,3%

reg lnso dochg

·	Coef.				[95% Conf.	Interval]
dochg	.0000825 -1.898676	2.85e-06	28.99	0.000	.0000769 -1.925294	.0000881

- Explained variable
 - Logarithm of savings rate (lnso) continuous variable (unit= 1 Euro)
- □ Explanatory variables
 - Income (dochg) continuous variable
- □ We interpret dochg coefficient as **semi-elasticity**
 - The increase in income by 1 Euro increases the savings rate by 0,008%

Example

Source 	SS 153.615074 1270.62287 1424.23795	20878 .			Number of obs F(5, 20878) Prob > F R-squared Adj R-squared Root MSE	= = 0.0000 =
so	Coef.	Std. Er	r. t	P> t	[95% Conf.	Interval]
dochg _Isex_2 _Igredu_2 _Igredu_3 _Igredu_4 _cons	.0014056 .031791 .0423637	7.11e-0 .003796 .004953 .005103 .006819	9 0.37 3 6.42 3 8.30 7 8.71	0.000 0.320 0.000 0.000	.0000339 0060366 .0220821 .0323607 .0460537 0010356	.0000367 .0088477 .0414999 .0523666 .0727881 .0212488

- The model for savings rate was estimated. Explanatory variables: respondent's income (dochg); sex (sex): woman sex=0, man sex=1; education (gredu): primary gredu=1, gymnasium gredu=2, secondary gredu=3, higher gredu=4.
 - Assume **significance level** $\alpha = 0.05$
- 1. Compute R^2 and F statistics.
- 2. Comment fit of the model.
- 3. Are variables jointly significant?
- 4. Which variables are significant?
- 5. Interpret model coefficients.

Hint: Remember to give names of used tests, test statistics, null hypothesis.