Probability Theory.

- 1. Random vector.
- 2. Expected value of random vector.
- 3. Conditional expected value of random vector.
- 4. Variance-covariance matrix of random vector.
- 5. Properties of normal distribution, chi square distribution, t distribution, t distribution.

1.1 Exercises: expected value, variance.

- 1. Show that $Cov(x_ix_j) = E(x_i, x_j) E(x_i)E(x_j)$.
- 2. Show that if $E(x_i) = 0$ than $Var(x_i) = E(x_i^2)$.
- 3. Which of matrices:

$$A = \begin{bmatrix} 1 & 3 & 2 \\ 3 & 2 & 1 \\ 4 & 2 & 3 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 3 & 2 \\ 3 & 2 & 2 \\ 2 & 2 & 3 \end{bmatrix}, \qquad C = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 4 \end{bmatrix}$$

can be variance-covariance matrices?

4. Show, that for any random vector ε , non-random vector a and non-random matrix B:

$$E(a + B\varepsilon) = a + BE(\varepsilon)$$

$$Var(a + B\varepsilon) = BVar(\varepsilon)B'$$

- 5. We have random vector x, $E(x) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $Var(x) = \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix}$. Compute expected value and variance of $y = \begin{bmatrix} x_1 + 2x_2 + 5 \\ x_1 + x_2 + 1 \end{bmatrix}$.
- 6. We have random vector x, $E(x) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $Var(x) = \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix}$.

Compute:

- a. Standard deviation of x_1, x_2 .
- b. Correlation between x_1, x_2 .
- c. Expected value and variance of $y = 5 + x_1 + 2x_2$.
- 7. Proof that for any random matrix A : E[tr(A)] = tr[E(A)].
- 8. Assume that E(x) > 0. What is the relation between E(x), $E\left(\frac{1}{x}\right)$?

Hint: use Jensen theorem.

9. Assume that y, x are random variables, $E\left(\frac{y}{x}|x\right) = ?$

10.
$$E(x) = 2$$
, $E(y|x) = 1 + 2x$. $E(y) = ?$

2. Normal distribution.

1. What is the distribution of $v = a + B\varepsilon$, if $\varepsilon \sim N(0, \Sigma)$?

- 2. Show that for k-dimension random vector $\varepsilon \sim N(0, \Sigma)$, quadratic form $\varepsilon' \sum_{i=1}^{n-1} \varepsilon \sim chi squre(k)$.
- 3. We have random vector $x \sim N(\mu, \Sigma)$, where $\mu = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$, $\Sigma = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 4 \end{bmatrix}$. What is the distribution of random variable $v = x_1 + 2x_2 + x_3$?
- 4. We have random vector $x \sim N(\mu, \Sigma)$, where $\mu = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$, $\Sigma = \begin{bmatrix} 5 & 3 \\ 3 & 2 \end{bmatrix}$.

Show that $v = \begin{bmatrix} x_1 - x_2 - 1 \\ -x_1 + 2x_2 + 4 \end{bmatrix}$ has distribution $v \sim N(0, I)$.

Proof that $(x_1 - x_2 - 1)^2 + (-x_1 + 2x_2 + 4)^2 \sim chi - square(2)$.

Show the same for $\sum_{-1}^{-1} = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}$.

3. Statistics.

- 1. Estimator.
- 2. Unbiased estimator.
- 3. Variance of estimator and efficiency.
- 4. Confidence interval.
- 5. Statistical hypothesis testing, critical values, p-value.

3.1 Exercises.

1. Show, that for two estimators $\widehat{\theta}$, $\widetilde{\theta}$ of parameter vector θ with variances $\widehat{\Sigma}$, $\widehat{\Sigma}$ and the positive-definite difference $\widehat{\Sigma}$ - $\widehat{\Sigma}$:

$$Var(\delta'\hat{\theta}) > Var(\delta'\tilde{\theta})$$

2. We have random variables y_1, y_2 .

$$E(y_1) = \theta$$
, $E(y_2) = \frac{1}{2}\theta$, $Var(y_1) = 3\sigma^2$, $Var(y_2) = \sigma^2$, $Cov(y_1, y_2) = \sigma^2$

- a. What are the conditions on a_1 , a_2 for estimator $\hat{\theta} = a_1 y_1 + a_2 y_2$ to be unbiased.
- b. Find a_1 , a_2 for estimator $\hat{\theta}$ to have the smallest variance and be unbiased.
- c. For y_1, y_2 having normal distribution find the distribution of $\hat{\theta}$.
- 3. We have n-dimension vector x. Elements if this vector have the same expected value μ and variance σ^2 and are non-correlated.
 - a. Find variance-covariance matrix of vector x.
 - b. Proof that $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ is unbiased estimator of μ .
 - c. Show that variance of \bar{x} decreases when N increases.
- 4. We have estimator $\hat{\theta}$ of parameter θ and $se(\hat{\theta})$. We know that $\frac{\hat{\theta}-\theta}{se(\hat{\theta})} \sim t_s$, where s is the number of observations. For $\hat{\theta}=1$, $se(\hat{\theta})=0.5$, s=10:
 - a. Build 95% confidence interval for $\hat{\theta}$.
 - b. What will happen with the confidence interval if we will change 95% to 90%?
 - c. What will probably happen with confidence interval if n increases?
 - d. Verify hypothesis: $H_0 = 0$, $\alpha = 0.5$. Hint: $t_{10}(2) = 0.07$ (value of cumulative distribution function)