I ALGEBRA

Main definitions

- 1. A matrix, operations on matrices: adding, multiplication, transposition.
- 2. Determinant of a matrix (definition and properties).
- 3. Quadratic forms (positive define matrix).
- 4. Trace of a matrix (definition and properties).
- 5. Idempotent matrix.

EXERCISES.

1. The following matrices are given:

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 3 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} 2 & 3 \\ 1 & 1 \\ 2 & 3 \end{bmatrix}$$

Compute:

$$2A, B', A + B', AB, |AB| = \det(AB).$$

Explain, why it is not possible to compute AB', A + B.

2. The following matrices are given:

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 2 \\ 4 & 1 \end{bmatrix}$$

Show that matrix *A* is symmetric.

Show that $AB \neq BA$

Show that A, AB are singular.

- 3. Expand expressions (assume, that A and B are invertible): (A + B)(C + D)', $(AB)^{-1}(B)^{-1}$, $(BA)^{-1}(B)^{-1}$, $A(A + B)^{-1}$
- **4.** Show that for any invertible $A: (A^{-1})' = (A')^{-1}$
- 5. Proof (from definition), that matrix X'X is non-negative define.
- **6.** Proof (from definition of linear independence), that matrix X'X is non-singular when columns of matrix matrix X are linearly independent.
- **7.** (*)
- **8.** (*)
- **9.** Proof, that for matrices A and B (assume proper sizes) (AB)' = B'A'.
- **10.** Proof, that for trace of a matrix tr(A+B) = tr(A) + tr(B), tr(AB) = tr(BA).
- **11.** Proof, that for idempotent P, M = I P is also idempotent, and that MP = 0.
- **12.** Proof, that for any matrix A (such that A'A is non-singular) $P = A(A'A)^{-1}A'$ is idempotent.
- 13. Proof, that $M = I n^{-1}ll'$ is an idempotent matrix and that l'M = 0.

$$l = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$$

Compute tr(M).

II MATHEMATICAL ANALYSIS

Main definitions

- 1. Derivatives of scalar and vector functions with respect to a vector.
- 2. Proof, that for a column vectors a and β : $\frac{\partial a'\beta}{\partial \beta} = a$, $\frac{\partial a'\beta}{\partial \beta'} = a'$
- 3. Proof, that $\frac{\partial A\beta}{\partial \beta'} = A$ and $\frac{\partial \beta' A}{\partial \beta} = A$
- 4. Proof, that $\frac{\partial \beta' A \beta}{\partial \beta} = 2A\beta$
- 5. What should be the value of gradient of continuous and differentiable function $f(\beta)$ at point β^* , to provide that function has maximum at point β^* .
- 6. What is the characteristic feature of matrix of second derivatives?
- 7. How can we recognize, based on properties of matrix of second derivatives, that extreme of function of several variables is maximum.

EXERCISES.

- 1. Find gradient and Hessian of a function $y = 2x_1^2 + 3x_2^2 + 5x_1x_2 4$. Find extreme of this function and point its type.
- 2. Find extreme of function $y = x_1^2 + 4x_2^2 + x_1x_2 1$ and point its type. Find extreme for the same function with extra condition $x_2 2x_1 = 1$ (use Lagrange function). Compere extreme with and without extra condition.
- 3. The following values were found: $g^* = \max_{x_1 x_2} g(x_1, x_2)$ and $g^{**} = \max_{x_1} g(x_1 0)$. Compare g^* and g^{**} .
- 4. The following values were found: $g^* = \max_{x_1 x_2} g(x)$ (maximum with extra condition) and $g^{**} = \max_{x_1 x_2} g(x)$ (maximum without extra condition). Compare g^* and g^{**} .